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EXECUTIVE SUMMARY

The objective of this project was to evaluate NASCRAC™ version 2.0, a second
generation fracture analysis code, for verification and validity. This report represents the
achievement of this objective. NASCRAC™ was evaluated for verification and validity using a
combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests.
Several limitations and minor errors were detected. Additionally, a number of major flaws were
discovered. These major flaws were generally due to application of a specific method or theory,
not due to programming logic.

Verification in this project was defined as meeting one of two criteria: 1) agreement of
NASCRAC™ with the equations and algorithms of the source specified by NASCRAC™, or 2)
agreement within engineering accuracy between NASCRAC™ results and results from a lesser
known source not necessarily employing the same method. An example of the first type of
verification is a comparison of NASCRAC™ and NASA/FLAGRO source codes for a solution
that NASCRAC™ adapted from FLAGRO. An example of the second type of verification is
agreement between NASCRAC™ results and results computed by FRANC2D, a fracture and
fatigue numerical analysis program.

Validation was also defined using one of two criteria: 1) agreement within engineering
accuracy between NASCRAC™ results and results from a well-known source, or 2) favorable
comparison between NASCRAC™ results and results from the tests completed for this project.
The first validation criterion referenced such sources as The Stress Analysis of Cracks Handbook
by Tada, Paris, and Irwin or ASTM E399.

Eleven different capabilities were identified in NASCRAC™. Although certain capabilities
depended on other capabilities (e.g., fatigue crack growth depended on K solutions), the
independent features of each capability were evaluated separately for verification and validity.
Section 4 details the verification and validation results; however, the following list provides
succinct general conclusions about the validity of each capability:

* Kvsa: majority of solutions valid. NASCRAC™ performs RMS averaging of K's for
multi-dimensional cracks. This approach leads to errors in surface crack (quarter-elliptical,
semi-elliptical) calculations when high stress gradients are present.

» Jvsa: generally valid; limited number of configurations encoded.

» Crack opening area:  generally valid; limited number of configurations encoded.

* Life calculation due to fatigue crack growth:  modified Forman and Hopkins-Rau
equations not valid. Paris equation valid; Walker and Collipriest equations verified.
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» Tolerable crack size:  valid and verified to the extent that fatigue crack growth is valid and

verified. Sensitive to inputs (number of cycles per block, threshold value of AK).

Proof test logic: not valid. Observed failure loads were significantly higher than those
predicted by NASCRAC™. This difference in failure loads resulted in discrepancies
between NASCRAC™'s remaining life predictions and observed life.

Tearing instability: Implemented algorithm is not equivalent to the algorithm discussed
in the NASCRAC™ Users Manual. Two-dimensional configurations validated analytically.
Proved analytically that none of the three-dimensional configurations available in
NASCRAC™ will exhibit stable tearing.

Creep crack growth:  In general, the C* model implemented in NASCRAC™ does not
correlate with creep crack growth rates in aluminum. Experimentally-observed and
NASCRAC™-predicted creep crack growth rates in 304 stainless steel fell within the range
reported in the literature. Since this range was broad, the evaluation of NASCRAC™'s creep
crack growth validity was inconclusive,

Crack transitioning:  Invalid because the transitioning factor f; does not capture the load
cycles required to transition a crack from one configuration (e.g., a surface crack) to another
configuration (e.g., a corner crack). Although this capability was invalid in comparison to
test results, the NASCRAC™ results were conservative, i.e., NASCRAC™ predicts failure
at a fewer number of cycles compared to test observations.

Crack retardation due to due to overloads: The implementations of the Wheeler and
Willenborg retardation models in NASCRAC™ were verified. However, these models are
very simplistic and do a poor job of capturing the physics of crack retardation; therefore, in
general, the models can only be considered marginally valid compared to tests. These
models should only be used for quick and easy first order estimations of crack retardation.

Elastic-plastic stress redistribution: The sensitivity of this NASCRAC™ capability to
material property values renders this feature impractical for engineering analyses.

Exceptions accompany each of the above general conclusions from the verification and

validity evaluations; however, these conclusions are intended to provide NASA/MSFC
management with the following generalization about NASCRAC™: the code is an acceptable
fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening
area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude
loads when the Paris equation is applicable.

The successful completion of the evaluation of NASCRAC™ for verification and validity

provides NASA with two benefits beyond the scope of the funded effort. These added benefits
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* alarge database of experimental results in fatigue, tearing, and creep fracture which can serve
as a validation base for other NASA projects and for future software simulators. Much of
this data was obtained on structural configurations which are not typical of the simple
geometries often used in laboratory experiments.

» a refined verification and validation methodology which can be applied to future fracture
simulators.

These added benefits are now available to the NASA Fracture Control Board to evaluate
current and future fracture mechanics tools for verification and validity.
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1.0 INTRODUCTION

NASCRAC™ (NASA Crack Analysis Code - Version 2.0) is a second generation fracture
analysis code developed for NASA/Marshall Space Flight Center (MSFC). The code uses a
weight function approach to solve traditional fracture problems such as stress intensity factors
and life calculation due to fatigue. NASCRAC™ also contains capabilities for advanced fracture
analysis, e.g., crack retardation, life calculation due to creep, and elastic-plastic stress
redistribution near the crack tip. Since NASCRAC™ includes the computationally efficient
weight function approach and a broad spectrum of advanced capabilities, NASA/MSFC expects
to employ NASCRAC™ as an integral component of the NASA Fracture Control Program for
validating flight hardware. This critical role of NASCRAC™ in future NASA analyses dictates
both a complete and objective independent verification and validation (V/V) of the code to
ascertain the restrictions and ranges of applicability for each NASCRAC™ solution and
capability. Nichols Research Corporation (NRC) and its subcontractor, Cornell University, and
consultant, Fracture Analysis Consultants (FAC), were contracted by NASA/MSFC to perform
such a V/V. This report presents the results of the NASCRAC™ verification and validation.

The V/V effort focused on verification and validation of solutions embedded in
NASCRAC™. No attempts were made to correct solutions or to develop new solutions. In the
case of minor programming errors, corrected versions were run offline to determine the extent of
the problem.

The V/V process was based on categorization of the NASCRAC™ solutions and
capabilities into three groups: basic information (Bl), synthesized results (SR), and advanced
capabilities (AC). The BI group consisted of K vs a, J vs a, and crack opening area (COA) vs a.
The SR group included life calculation by fatigue crack growth, tolerable crack size, proof test
logic, tearing instabiliry, and life calculation by creep crack growth. The AC group included
crack transitioning, retardation due to overloads, and elastic plastic stress redistribution.
Section 2 of this report provides a succinct description of the theory behind NASCRAC™.
Section 3 focuses on the V/V methods and decision process used to verify and validate
NASCRAC™. Results and solution specific discussion are presented in Section 4. Conclusions
and recommendations are provided in Section 5. Finally, Appendix A contains a listing of
recommended ranges for the K solutions. References are included at the end of each section.
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2.0 TECHNICAL BACKGROUND

NASCRAC™ is a fracture analysis code capable of performing linear elastic and elastic-
plastic fracture analyses. NASCRAC™ is restricted to mode I, or opening mode, fracture.
Capabilities incorporated into NASCRAC™ include computation of K vs a,J vs a, COA vs a,
fatigue crack growth, tolerable crack size, creep crack growth, proof test logic, tearing
instability, and localized elastic-plastic stress redistribution. NASCRAC™ can accept cyclical,
steady-state, and random load spectrum definitions. Eleven material libraries are available: two
miscellaneous steel libraries, stainless steel, AL-2024, AL-6061, AL- 7075, two miscellaneous
aluminum libraries, cast aluminum, inconel, and titanium. Users may also define a material
interactively or create a material library. Currently twenty-eight crack configurations are
incorporated in the code. Crack retardation is possible using either the Wheeler or Willenborg
models.

K solutions in NASCRAC™ are computed using encoded closed form solutions for
uniform tensile loads and weight function formulations for arbitrary loads. Robust integration
routines incorporating Gaussian integration and a broad library of weight functions provide an
extensive computational capability for calculating K solutions of various loadings and
geometries. In the weight function approach, a K solution of a specific geometry can be
calculated for an arbitrary loading by integrating a point load solution over the crack face. This
approach can be expressed as:

a

K = |o{x) h(x,a) dx eq. 2.0-1
0

where a = crack length
o(x) = crack plane stress derived from the uncracked geometry
h(x,a) = weight function from a known solution

Weight functions can be determined from simple load cases and applied to unique,
complex load cases. Figures 2.0-1 and 2.0-2 illustrate the weight tunction approach to fracture
analysis. As shown in Figure 2.0-1, K solutions can be obtained for an arbitrary loading by
employing superposition to reduce the arbitrary loading to two simpler loadings: a cracked
geometry with external tractions (the problem of interest) and an identical cracked geometry with
tractions only along the crack face. Since these two loadings are reduced from an uncracked
problem, their K solutions sum to zero, i.e., Kq= -Ke.
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Figure 2.0-1. Application of Superposition Principle in Fracture Mechanics

As depicted in Figure 2.0-2, -K, can be calculated from a weight function formulation.
The weight function solution is calculated by integrating the product of the crack face stress
distribution o(x) and the weight function h(x,a) along the crack face.

P dP = o(x) dx o(x)
A y
em—-- (==
vW‘
la———— b ——— b > ja—————— b— ]
= ( 2" a [ x a’
K = Ph {\li} dK = O(x)dxh (k_x.:.)\ K = .fo(x)hk—.—).dx
a b a b o a b

Figure 2.0-2. Weight Function Formulation for Stress Intensity Solutions

J-integral solutions in NASCRAC™ are computed by assuming J to be a surnmation of
elastic and fully plastic components:

I=Jc+1p eq. 2.0-2

where J is the total J integral, J, is the elastic component of the J integral, and J;, is the plastic
component of the J integral.

The elastic component is computed by using an effective crack length with a standard K
solution and the plastic component is computed from a limit load concept using a calibration
factor obtained from handbook solutions. A Ramberg-Osgood constitutive relationship is used to

o
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define plasticity. J, values generally require interpolation because the handbook solutions are
limited in range. The general equation for J;, is given as:

a P
Jp=aoyeyc i h 1;(;)'”1 eq. 2.0-3

In this equation a is a material property; oy and ey are the yield stress and strain of the material; a,
b, and ¢ are geometric dimensions with a being the crack length; P and Py are the applied load
and limit load of the structure, h; is a correction factor related to geometry and strain hardening
of the material, and n is the strain hardening exponent from the Ramberg-Osgood model.

In NASCRAC™, five configurations have an option for calculating crack opening area.
For each configuration, the crack opening area is calculated according to closed form solutions
found in references.

Seven of NASCRAC™'s configurations include a variable thickness option for
calculating a K solution and life due to fatigue crack growth. The option is a discrete variable
thickness with the thickness being defined at specified points along the crack plane. During
calculation of K, the stress is distributed along the crack in proportion to the thickness at the
discrete points.

Three types of load spectrums can be input into NASCRAC™: cyclic, steady-state, and
random. For the cyclic spectrum, load transients are defined with a specified number of cycles.
Transients are arranged into blocks to form the spectrum. To define a load, the user must input
two of the following five variables: maximum stress, minimum stress, stress range, stress mean,
and R ratio.

NASCRAC™ provides five coded equations for fatigue crack growth and tolerable crack
size analysis: Paris, Walker, modified Forman, Collipriest, and Hopkins-Rau. The NASCRAC™
material libraries include crack growth constants for the modified Forman equation only. The
user is required to input material properties values when using one of the other growth equations.
Using the da/dN computed from the selected equation, cracks are grown by one of three
integration schemes: cycle-by-cycle, transient-by-transient, or piecewise-linear.

NASCRAC™'s tearing instability capability provides the analyst with an automated
means of determining the stress level at which a crack in a plane stress specimen will grow
catastrophically to failure. Prior to this critical stress level, tearing of the specimen will occur in
a stable manner and will be arrested due to the increased tearing resistance of the material caused
by plasticity at the crack tip.
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In the NASCRAC™ theory manual, the criteria for tearing instability are given as:

Kappiied > KR and  dKgppliea /da > dKR /da eq. 2.0-4
eq. 2.0-5

where Kgppiieq is the stress intensity factor due to the applied stress; KR is the crack growth
resistance K corresponding to the initial load and crack length; dKgppiied /da is the slope of the
Kapplied curve (where the Kapplied curve is linear from (0, 0) to (a, Kapplied)); and dKg/da is the
slope of the crack growth resistance curve at Kr. The tearing instability option in NASCRAC

requires input of a crack growth resistance curve (K-R curve) in tabular format or as a power law
function (Kg = C; (Aa)P).

Figure 2.0-3 illustrates a typical tearing resistance analysis. The Kgr-Aa curve is
superimposed on the graph such that Aa = zero coincides with the initial crack length, a,. Four
Kapplied-@ curves corresponding to increasing loads P; through P4 are shown. For initial crack
size, ao, the load Py does not result in K > K|c. Therefore, no crack propagation occurs. Crack
propagation begins at load P, when Kgpplied = Kic. At load P3, the crack has propagated a length
Aajy. After this propagation increment Kyppiieq = Kr. The result is a stable crack of length, a,
+Aas. Atload Py, the tangents of the Kapplied-a and the Kr-Aa curves are equal. Therefore, crack
propagation is unstable.

Proof test logic in |[K |}
NASCRAC™ is a two-step
analysis. First, NASCRAC™

Kc
predicts the largest crack which
will survive a given proof test.
This prediction is done

Kic

iteratively. This predicted crack
is then used as an initial crack
length for a life calculation due
to fatigue crack growth under a
typical service load spectrum.

A ag

crack length, a

-

NASCRAC™ calculates K appiiea 10ad = P1 crack extension, Aa

life due to creep crack growth K appiied l0ad = P2 ao

using the C* crack growth = T 7 K pplieg 03d = P3

model. In the C* model stress, K applied 0ad = P4

strain, and strain rate are Kr

described in a relationship Flgure 2.0-3. Typical Elastic Tearing Stability Analysis



similar to the Ramberg-Osgood stress-strain model. The stress tensor is a function of C*. C* is
a path independent integral defined by the following equation,

. . u.
C = Wdez - GlJnl_XLdS
1
r eq. 2.0-6
. ‘::ij .
WE = f Gij de ij
where 0

The equation for C* is analogous to the plastic term in the J-integral, with strain rate
replacing strain. Given C*, NASCRAC™ predicts creep crack growth rate based on the
following relationship,

da = C; (C*)“cw

dt eq. 2.0-7

At the onset of loading, the creep strains will be zero and crack growth will be dependent on the
stress intensity factor K and the K field. However, long term, the creep strains will be much
larger than the elastic strains, and the C* field will dominate. This long term effect, defined as
steady state creep crack growth, is the creep crack growth calculated in NASCRAC™. Loading
for this capability is restricted to uniform tension.

2-5



3.0 VERIFICATION AND VALIDATION METHODOLOGY

The NASCRAC™ verification and validation plan was a comparative approach using
three different types of reference solutions: 1) documented solutions from the literature,
including closed form and graphical solutions, 2) finite element and boundary element solutions,
and 3) testing. NASCRAC™ solutions were categorized into three areas: Basic Information
(BD), Synthesized Results (SR), and Advanced Capabilities (AC). The B/ category consisted of K
vs a, J vs a, and crack opening area (COA) vs a. The SR category included life calculations due
to fatigue and creep, tolerable crack size, proof test logic, and tearing instability. The AC
category included elastic-plastic stress redistribution, crack transitioning, and crack retardation
due 1o overloads.

NASCRAC™ contains 422 solutions and capabilities. This quantity was calculated by
summing the number of crack topologies available for each NASCRAC™ capability. Variations
in loading conditions were not included in the tabulation. Each NASCRAC™ group, i.e., B/, SR,
and AC, required a different V/V approach. Bl solutions are dependent on analytical, numerical,
and experimental results external to NASCRAC™ plus the weight function feature of
NASCRAC™. Solutions in the SR category use a number of programmed theoretical or
empirical crack growth rate and stability models (e.g., Paris's equation) plus data calculated or
interpolated from B/ results to synthesize or compute results. An accurate SR depends on the
accuracy of the B/ and also on the proper choice of a theoretical or empirical model for the
physical problem. Thus, verification of B/ solutions were accomplished with literature and
numerical analyses whereas verification of an SR solution required verifying the B/ and
determining the applicability of the chosen empirical or theoretical model using experimental and
numerical techniques. AC solutions (overloads, elastic-plastic stress redistribution, crack
transitioning) required B/ results and advanced theoretical formulations. Accurate AC solutions
are strongly dependent on understanding the range for which the formulation is applicable.

Verification in this project was defined as meeting one of two criteria: 1) agreement of
NASCRAC™ with the equations and algorithms of the source specified by NASCRAC™,; or 2)
agreement within engineering accuracy between NASCRAC™ results and results from a lesser
known source not necessarily employing the same method. An example of the first type of
verification is a comparison of NASCRAC™ and NASA/FLAGRO source codes for a solution
that NASCRAC™ adapted from FLAGRO. An example of the second type of verification is
agreement between NASCRAC™ results and results computed by FRANC2D, a fracture and
fatigue numerical analysis program.

Validation for this project was also defined using one of two criteria: 1) agreement within
engineering accuracy between NASCRAC™ results and results from a well-known source; or 2)
favorable comparison between NASCRAC™ results and results from the tests completed for this
project. The first validation criterion referenced such sources as The Stress Analysis of Cracks
Handbook by Tada, Paris, and Irwin or ASTM E399.
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A sequence of comparisons was set up to evaluate validity. In the first step,
NASCRAC™ and a literature source or closed form solution were compared. If reasonable
agreement was found, the solution or capability was consider valid. If reasonable agreement was
not found, a second solution from the literature was compared. Agreement between the original
literature source and the second source indicated an error in NASCRAC™. Agreement between
NASCRAC™ and the second source suggested a problem with the literature source. If this
second comparison was not conclusive or not available, testing was performed. Results from
testing were considered to be ground zero results within experimental variation. If NASCRAC™
results did not fall within the statistical variation of the experiment, the NASCRAC™ solution
was determined to be invalid.

Independent integration external to NASCRAC™ was used to check the NASCRAC™
integration routines. The external routines were based on a Romberg integration algorithm
which differed from the Gaussian quadrature algorithms in NASCRAC™,

The accuracy of NASCRAC™'s ability to estimate K solutions for variable thickness
planar bodies using weight function solutions was determined by comparing NASCRAC™
results with finite element results. The finite element models included up to third order
polynomial variation in global thickness.

Several references were used extensively for the V/V process. For K vs a solutions and
uniform or bending loads, [1] and [2] provided graphical, curve fit, and closed form solutions.
[2] also contained closed form point load solutions for certain NASCRAC™ configurations.
These point load solutions were integrated numerically to verify the NASCRAC™ weight
function solutions. [3] was also a primary reference for weight function solution V/V. For
several of the non-through crack K vs a solutions, [4] was a critical resource.

[5] and [6] were the primary V/V sources for NASCRAC™'s seven J vs a configurations.
These two references listed the coefficient tables coded into NASCRAC™ in addition to the
coded equations.

Three different NASCRAC™ solution groups were verified by direct comparison of
coded equations with literature sources. In the 100 series configurations (ASTM standard
fracture toughness specimens), the coded equations were compared to [7]. For the J-integral
capabilities, the coded limit load (Pg) equations were compared to {5]. Finally, for the five COA
vs a configurations, the coded equations were compared to equations listed in references [2] and

[3].

FRANC, a fracture specific finite element and boundary element tool described in [8] and
[9], was employed in the K vs a V/V efforts. This workstation based code allows an analyst to
compute stress intensity factors for arbitrary cracks in arbitrary bodies. Menu-driven post-
processing routines provide both numerical and graphical results.
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4.0 RESULTS AND DISCUSSION

The techniques described in the previous section were used to verify and validate
NASCRAC™. Results ranged from identical and acceptable solutions versus references to
coding errors, documentation errors, and unacceptable solutions. This section presents the V/V
results of each NASCRAC™ solution and capability.

41 Kysa CALCULATION: UNIFORM THICKNESS

The uniformly thick K solutions in NASCRAC™ form the foundation of the code. There
are twenty-eight uniformly thick K solutions. These solutions permit static checks of K versus
Kjc and also drive the fatigue crack growth, tolerable crack size, tearing instability, and proof test
logic capabilities.

4.1.1 100 SERIES RESULTS

The 100 series K solutions in NASCRAC™ simulate the four standard test specimens
specified by ASTM E399 [1]. These solutions were verified and validated using two
comparisons: a comparison of the coded mathematical expression versus the equations listed in
ASTM E399-90 and a comparison of NASCRAC™ results versus results calculated from the
ASTM E399-90 equations. Results from these comparisons prove the general validity of the
coded NASCRAC™ solutions. Specific exceptions to this conclusion are discussed in the
following subsections.

4.1.1.1

The geometry for configuration Pi
101, the ASTM E399 compact tension
specimen, is shown in Figure 4.1.1.1-1. L
A subset of comparative results is {)
presented in Table 4.1.1.1-1. Although ~
the results shown in the table appear //////
acceptable, the comparison of the {_) i / %
NASCRAC™ code with the ASTM W
E399 equation revealed a minor coding
error. The error, shown in Figure
4.1.1.1-2, is a typographical error in the
first coefficient of the FAOW equation.
The coefficient should be 0.886 but the NASCRAC™ value is 0.866.

f—

w
PY
Figure 4.1.1.1-1. Geometry for Configuration 101,
Compact Tension Specimen
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Table 4.1.1.1-1 Representative Results for Configuration 101

W B a P K -- ASTM K - NASCRAC™
5.0" 1.0 1.0" 1,000 1b 1,883 psi - inl?2 1,884 psi - inl2
10.0" 5.0" 5.0" 1,000 Ib 602 psi - in!?2 602 psi - in'?
10.0 33" 5.0" 1,000 1b 903 psi - in!?2 903 psi - in!2
10.0" 2.5" 5.0" 1,000 1b 1,204 psi - in'2 1,204 psi - in!72
10.0" 25" 1.0 1,0001b 754 psi - in1/2 754 psi - in!?2
10.0" 25" 2.0 1,000 1b 1,284 psi - in!?2 1,284 psi - in!/2
SUBROUTINE K100
c-- e C
Gl m o e C
AOW=ANOW (1) /WIDTHS (1)
SIGZ=EQPARS (ITRANS, IDEF, 1)
C
GOTO (101,102,103,104) (KRKTYP-100)
c
C COMPACT TENSION SPECIMEN , KRKTYP=101
C
101 Faow=[IETRY +A0W* (4.64 +AOW* (-13.32 +AOW*(14.72 +AOW*(-5.6))))
FAOW=FAOW* (2. +AOW) / ( (1.-AOW) **1.5)
XK (IDEF, 1) =FAOW*SIGZ / (WIDTHS(2) * SQRT(WIDTHS(1)))

Figure 4.1.1.1-2. Coefficient Error for Configuration 101

ASTM E399 limits the validity of this solution to 2 < W/B < 4. This limitation needs to
be documented clearly on screen and in the user's manual.

4.1.1.2 i i

Figure 4.1.1.2-1 displays
the geometry of configuration 102,
the ASTM E399 disk-shaped
compact type specimen . The K
solution coded in NASCRAC™
compared identically to the
equation listed in ASTM E399.
Additionally, for three different
thicknesses, NASCRAC™ results
were identical to analytical results
computed using the E399 equa-
tion. These comparative results
are listed in Table 4.1.1.2-1. This
NASCRAC™ solution is valid
based on the consistency in these
two sets of comparisons. ASTM E399 limits the validity of this solution to 2 < W/B < 4. This
limitation needs to be documented clearly on screen and in the user's manual.

B

la————W

Figure 4.1.1.2-1. Geometry for Configuration 102, Disk Shaped
Compact Type Specimen
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Table 4.1.1.2-1. Representative Results for Conflguration 102

SAMPLE | SAMPLE | CRACK LOAD ASTM NASCRAC™
WIDTH | THICKNESS | LENGTH RESULT RESULT
5.0" 2.0" 1.0 1000 Ibg 922 psi - in!/2 922 psi - in'?2
5.0 1.25" 1.0 1000 1bg 1476 psi - in'/2 1476 psi - in}?2
5.0 1.0" 1.0 1000 1bg 1845 psi - inl/2 1845 psi - in!?2
4.1.1.3 Configuration 103 (Arc Shaped Specimen)
Figure 4.1.1.3-1 displays the geometry for P
configuration 103, the ASTM E399 arc shaped
specimen . Comparative results computed by
parameterizing specimen thickness are listed in
Table 4.1.1.3-1. These results plus agreement B
between the NASCRAC™ coded equations and _L
the ASTM E399 equation validate this model. a %
The comment of dimension limits discussed for Z
T
configurations 101 and 102 is also applicable to

.I — |=—a
H——W—-—»

this configuration: ASTM E399 limits the w

validity of this solution to 2 £ W/B < 4. This

limitation needs to be documented clearly on

screen and in the user's manual. P

Figure 4.1.1.3-1. Geometry for Configuration 103,
Arc Shaped Specimen

Table 4.1.1.3-1. Representative Results for Configuration 103

SAMPLE | CURVATURE | SAMPLE | LOAD | CRACK ASTM NASCRACT™
WIDTH | DESCRIPTION | THICKNESS | OFFSE | LENGTH| LOAD RESULT RESULT
T
3.0 3.0" 1.5" 25" 1.0" 1,000 Ib 3,656 psi -in}2 | 3,656 psi - inl2
3.0 3.0" 1.0" 25" 1.0" 1,000 Ib 5,484 psi - in}2 | 5,484 psi - in'2
3.0" 3.0 0.75" 25" 1.0 1,000 1b 7,311 psi -in}2 | 7,311 psi - in!2
3.0" 3.0 05" 25" 1.0" 1,0001b | 10,967 psi - in!2 | 10,967 psi - in!2
4.1.1.4 Configuration 104 (Standard Three-Point Bend Specimen)

Figure 4.1.1.4-1 shows the geometry for configuration 104, the ASTM E399 standard
three-point bend specimen. Table 4.1.1.4-1 presents comparative results for this solution. The K
solution for configuration 104 is coded correctly but an onscreen message is misleading to the
user. The onscreen message occurs during definition of the specimen geometry as shown in
Figure 4.1.1.4-2. The message should read Please Note: For K solution, L is set equal to 2W,
no matter what value of L is entered. In NASCRAC™, 4W in the message should be replaced
by 2W, or, alternatively, eliminate L as input.
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Figure 4.1.1.4-1. Geometry for NASCRAC ™ Conlflguration 104, Standard Three-Point Bend Specimen

Table 4.1.1.4-1. Representative Resuits for Configuration 104

a w B L‘ P K (psi - inllz )

, : . : ROOKE & o
(in) (in) (in) (in) (Ibf) CARTWRIGHT ASTM NASCRAC
0.1 15 2 6 1000 2325 2317 1158
0.1 1.5 1 6 1000 4651 4634 2317
02 2.0 1 4 1000 2345 2396 2396

* NASCRAC™ antomatically sets L to 2W

STANDARD 3-POINT BEND SPECIMEN {104]
Variable Thickness: Not Available
Crack Position Xc: Not Used

Yc: Not Used
Crack Orientation Phi: Not Used
Stress Input Options : Pin Load only; Use Equation Type 6
J-Integral Solutions : Available for plane stress and plane strain

0.125 =< a/W =< 0.875 1l =< n =< 20

Please Note: For K
Solution, L is set
equal to 4W, no matter
what value of L is
entered.

L @

| 2L -

Inputs Required: a = Crack depth; W = Width in direction of crack
B = Specimen thickness; L = Specimen half length

- an em e s E Em En W M e E e e W Me me e e R W GE e Gm G M Gm AR e e R G e e e G e M e e e e

Enter a, W, L, and B

Figure 4.1.1.4-2. Error in Onscreen Note for Configuration 104
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4.1.2 200 SERIES RESULTS

The nine 200 series K solutions modeling various through cracks configurations were
verified and validated using three approaches: comparison to literature, independent numerical
integration of weight functions, and finite element analysis with FRANC. No significant model
or implementation errors were discovered. Several inconsistencies in the documentation were
discovered.

Several 200 series configurations were analyzed to determine if the integration schemes
in NASCRAC™ were acceptable. Table 4.1.2-1 lists representative results from NASCRAC™
and from direct integration of weight functions for configurations 201, 203, and 204, i.e., crack
in an infinite plate, single edge crack in a plate, double edge cracks in a plate. The weight
functions were obtained from [3]. The integrations were performed for non-uniform stress
distributions as listed and were accomplished in FORTRAN using Romberg integration since the
weight functions were singular at the crack tip. The results listed in Table 4.1.2-1 indicate that
the Gaussian integration schemes used in NASCRAC™ are acceptable.

Table 4.1.2-1. NASCRAC™ Versus Romberg Integration of Selected Weight Functions

CONFIGURATION GEOMETRY STRESS NASCRAC™ ROMBERG
DISTRIBUTION RESULT INTEGRATION
201 a=0.1" 1000-200x+10x2 567 psi Vin 566 psi Vin
203 a=0.1", W =10" 4000-800x+40x2 2513 psi ¥in 2524 psi Vin
204 a=0.1", W =10" 500 + 50x 319 psi Vin 316 psi Vin
204 a=0.1", W =10" 4000-800x+40x2 2509 psi Vin 2483 psi Vin
4.1.2.1

Figure 4.1.2.1-1 displays the |3
geometry for configuration 201, crack in mc
an infinite plate. NASCRAC™ results —

for uniform tension showed exact

agreement with multiple literature I‘_

sources. Additionally, the coded equation % t

in NASCRAC™ was identical to the L

well-known solution for a crack in an J‘_
infinite plate subjected to uniform 4 +a
tension: K = gV¥ra. For non-uniform 1 J v_V
loading types, NASCRAC™ uses an l o]
influence function. Comparative,
representative results for both uniform

loading and non-uniform loads are shown
in Table 4.1.2.1-1.

f
£
|

-b'al

Figure 4.1.2.1-1. Geometry for Configuration 201,
Crack in an Infinite Plate



This K solution is valid for

Table 4.1.2.2-1. Representative Results for Configuration 201

a uniformly thick plate of unit
thickness based on the studies

represented by the results in Table

4.1.2.1-1 and the equivalency

between the coded equation and

a c K
(in) (psi) NASCRACT™ REFERENCE
0.10 1000 560.5 psi Vin 560.5 psi ¥in [2,4]
0.10 1000 + 50x 562.4 psi Vin 561.9 psi Vin [3]!
0.10 1000 - 50x 559.6 psi Vin 559.1 psi ¥in 3]}
0.10 § 1000 - 200x + 10x2 566.6 psi Vin 566.2 psi ¥in (3]

the known solution for a crack in
an infinite plate. An inconsistency

1 computed using Romberg integration and the weight function from [3]

does occur in this solution for uniformly thick specimens not equal to unit thickness when the
variable thickness option is activated. This inconsistency is discussed in Section 4.2.

4.1.2.2 Configuration 202 (Center Cracked Panel)

The geometry for
configuration 202, center cracked
panel, is shown in Figure 4.1.2.2-1.
This K solution in NASCRAC™
uses a curve fit for uniform stresses
and a weight function for non-
uniform stresses. The formulation
assumes that stresses are symmetric
about the panel centerline. This
assumption explains the results in
Table 4.1.2.2-2 where two sets of K
values are listed. One set corre-

e

T T
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Figure 4.1.2.2-1. Geometry for Configuration 202, Center Cracked Panel

sponds to a symmetric load about the panel centerline, i.e., the stress function varies linearly
from zero at the left edge to 10 at the centerline and back to zero at the right edge. The second
set corresponds to an antisymmetric load about the panel , i.e., the stress is 20 at the left and
decreases linearly to 10 at the centerline and to zero at the right edge.

Table 4.1.2.2-2. Comparison of 202 K Values for Symmetric

and Antisymmetric Loads

Comparative results from a broad

range of geometries are presented in Table
4.1.2.2-3. The studies represented by

these results validated this NASCRAC™

solution for uniformly thick plates of unit

thickness.  An inconsistency does occur
in this solution for uniformly thick

a w K:SYMMETRIC | K: ANTISYMMETRIC
LOAD LOAD

1" 10" 16.7 16.7

2" 10" 22.5 22.5

3" 10" 26.5 26.5

4" 10" 29.8 29.8

5" 10" 33.0 33.0

specimens not equal to unit thickness

when the variable thickness option is activated. This inconsistency is discussed in Section 4.2.
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Table 4.1.2.2-3. Representative Results for Configuration 202

a | W | W, s K
(in) | (in) { (in) (psi) NASCRAC™ |  REFERENCE
AR E 1000 396.4 psi Vin | 396.4 psi Vin [2,4]
010 s | s 1000 + 100x 564.2 psiVin | 563.3 psiVin [4]
0100 5 | S 1000 - 100x 557.0psiVin | 557.7 psi Vin [4]
010 5 | 5 | 1000-400x +40x2 | 546.4 psivVin | 548.0 psiVin [3)!

1 computed using Romberg integration and the weight function from {3]

4.1.23

Misinterpretation of
results from this K solution is
possible if the symmetry
assumption is neglected. This
assumption needs to be more
apparent in the user's manual,
printed output, and onscreen.

Confieuration 203 (Single Edee Crack in a Plate)

Figure 4.1.2.3-1 presents
the geometry for NASCRAC™

e

T T

configuration 203, single edge
crack in a plate. This K solution in
NASCRAC™ uses a curve fit
function for uniform tension loads
and a weight function for general

12

- -

loads. Representative results from =

comparative studies are presented
in Table 4.1.2.3-1. These studies

B

v i v

f——— W —

validated this configuration for
uniformly thick plates.

Crack in a Plate

Table 4.1.2.3-1. Representative Results for Configuration 203

Figure 4.1.2.3-1. Geometry for Configuration 203, Single Edge

a w o K
(in) (in) (psi) NASCRAC™ REFERENCE
1.0 10 1000 2119 psi Vin 2103 psi Vin [4]
0.1 10 500 + 100x 321.8 psi Vin 315.8 psiVin [3]
0.1 10 1500 - 100x 950.1 psi Vin 947.5 psi Vin [3]
0.1 10 4000 - 800x + 40x?2 2513.2 psi Vin 2523.6 psi Vin {3]!
1 computed using Romberg integration and the weight function from [3]
4.1.24 fi ign 204 (D
Edge Cracks in a Plate) By

The geometry for configuration 204,
double edge cracks in a plate, is shown in
Figure 4.1.2.4-1. The formulation of this K
solution in NASCRAC™ is similar to that
of configuration 202. Both formulations
use a curve fit for uniform stresses and a
weight function for non-uniform stresses
and both formulations assume that stresses
are symmetric about the plate centerline.

s

W —a—\
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Figure 4.1.2.4-1. Geometry for Configuration 204, Double Edge
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Table 4.1.2.4-1 lists comparative Table 4.1.2.4-1. Representative Results for Configuration 204

results for this solution. These results (“) w) °) T YL KREFERENCE
indicate that this solution is valid for i} @0 (psi
d. . . . Jo1i100 1000 628.9 psiVin | 6309 psi Vin (3]
uniformly thick specimens of unit — —
hickn 0.1]100 500 + 50x 319.4 psi Vin | 316.2 psi Vin {3]
thickness. 0.1 100 1500 - 50x 950.5 psi Vin | 949.5 psi vin [3]
0.1 10.0 | 4000 - 800x +40x2 | 2509 psi ¥in | 2497 psi Vin [3]!

As in conflguratlon 202, _an 1 computed using Romberg integration and the weight function
inconsistency does occur in this solution from [3]

for uniformly thick specimens not equal
to unit thickness when the variable thickness option is activated. This inconsistency is discussed
in Section 4.2, K vsa CALCULATION: VARIABLE THICKNESS.

Misinterpretation of results from this K solution is possible if the symmetry assumption is
neglected. Therefore, this assumption needs to be more visible in the user's manual, printed
output, and onscreen.

4.1.2.5 Configuration 205 (Axial (id) Crack in a Hollow Cylinder)

The geometry for configuration 205, axial (inner diameter) crack in a hollow cylinder, is
shown in Figure 4.1.2.5-1. The K formulation for this configuration includes a uniform tension
solution and a weight function solution for general loadings. The weight function solution is
available for a limited number of r/W ratios where r is the inner radius of the cylinder and W is
the wall thickness of the cylinder.

Uniform tension results for 205
compared well to a number of reference results.
Representative uniform tension results are
shown in Table 4.1.2.5-1. For a majority of the
cases NASCRAC™ was conservative by as
much as 10%. In cases 4 and 5, NASCRAC™
is less than but within 2% of the FRANC value.
Case 3 shows uniform tension results from
NASCRAC™ using the weight function option.
A comparison of case 3 and case 2 shows that
the uniform tension solution is more
conservative than the weight function solution
for uniform tension. In case 6 the large

- difference between NASCRAC™ and FRANC
Figure 4.1.2.5-1. Geometry for Configuration 205, Axial . .
(id) Crack in a Hollow Cylinder may be due to the fidelity of the finite element
mesh.
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Table 4.1.2.5-1. Representative Uniform Tension Results for Configuration 205

CASE a r w G K
NASCRAC™ | REFERENCE FRANC
1 0.2 2 2 1.0 091 0.87 5] 0.84
2 0.7 2 2 1.0 1.97 1.93 [7)2 1.81
3 0.7 2 2 1000 + 0.0x 1893 n/a 1806
4 1.0 4 2 1000 2978 n/a 3027
5 1.0 10 2 1.0 3.65 n/a 3.713
6 1.0 20 2 1.0 432 3.92 (72 3.07

1 computed using Romberg integration and the weight function from [5)
2 computed using Romberg integration and the weight function from [7}

The 205 wei ght function _ Table 4.1.2.5-2. 205 Representative Results for Non-Uniform Loads

solution is available for a limited |SASE]2 1 * |W S mK -
number of inner radius to wall NASCRAC 1 5F | FRANC
5 ) 1 Jo2] 2] 2] 800+800x 786 782 | 750
thickness ratios: /W = 1,5,10 . 51031515 T 960 500 T 255 1 75
Selected results from weight function {73 [151 4 [ 3 | 1000 - 500x 18061 wa | 2401
solutions are shown in Table 4.1.2.5- [T 2 To21 2 1 2 11200 12000% = 261 258 | wa
2. 30000x2
5 |1o0fi0}2 x 1.98 na | 172
NASCRAC™ does allow 205 [ 6 [1o]10] 2 1-x 2.00 na | 2.00
geometries in which the r/W ratiois | 7 {1.0{20{ 2 X 2.13 na | 114
not equal to one of the three coded [_8 1.0120] 2 1-x 2.26 na | 194

1 NASCRACT™ ysed solution for /W = 1

ratios. If an uncoded ratio is specified ) X , ) i
2 computed using Romberg integration and the weight function fro m [5]

NASCRAC™ automatically uses one
of its coded ratios to compute results
and prints a warning on the geometry page of the output file that the analysis was completed for a
coded ratio, not the ratio specified by the user. This approach is not erroneous but, since
NASCRAC™ is designed to be an engineering tool, such logic increases the chances of human
erTor.

To illustrate the potential problem, a 205 Table 4.1.25-3. Comparison of NASCRAC™
configuration was analyzed with r/W = 0.5, 1.0, 2.0, - 205 Output for vir/:;m r/W Ratios
3.0, 3.25, 4.75, and 5.25. For each r/W ratio, the 05 [10] 20 [ 30 325475525
cylinder wall thickness, the crack length, and the K
stresses on the crack plane were identical. The only[o5 | 126126 1.26 | 1.26 [1.53 ] 1.53 ] 1.53
variable was the inner radius of the cylinder. Results| 1.0 |1.83]1.83]1.83{1.83]3.003.00]3.00
of the analysis are presented in Table 4.1.2,5-3;[15[232]232]232]232]534]534]5.34
identical results were observed for r/W = 0.5, 1.0, 2.0,
and 3.0 and also for /W = 3.25, 4.75 and 5.25. The first set of identical results corresponds to
/W = 1.0 and the second set corresponds to /W = 5.0. Figure 4.1.2.5-2 shows a condensed
version of the output file for r/W = 2.0 with the /W warning listed on the geometry page. The
calculated results in this output are reasonable for the coded r/W ratio (r/W = 1.0) but are not
necessarily reasonable for the specified r/W ratio (/W = 2.0), which could mislead an analyst.
This conclusion is supported by Table 4.1.2.5-3 as the crack length increases. From Table
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4.1.2.5-3, if the geometry of interest were r/W = 3.0 with W = 2.0, NASCRAC™ would calculate
K =2.32 for a = 1.5; however, if the cylinder radius increased slightly such that r/W = 3.25 with
W = 2.0, then NASCRAC™ would calculate K = 5.34 for a = 1.5. Again this discrepancy arises
because NASCRAC™ is using its r/W = 1 solution in the first case and its r/W = 5 solution in the

second case.

PROBLEM TITLE : g20Sratioc2
-> Axial (ID) crack in a hollow cylinder 205
#* WARNING :@ Ri/h = 2.0000

For stresses defined by Equation 1, K solution for
Ri/h = 2,00 will be used

IF solution for Ri/h = 1 will be used otherwise.

Initial Crack Dimension(l) = 0.50000
Final Crack Size - 1.50000
Crack Size Increment = 0.10000
BODY WIDTHS (1) = 2.00000
BODY WIDTHS(2) = 4.00000
MAXIMUM STRESS DEFINED BY EQUATION TYPE : 2 WHICH IS ...

STRESS= A0 + Al*X, AO= 1.0000E+00
Al= -5.0000E-01
MULTIPLICATION FACTOR = 1.00000E+00

K vsS. A SUMMARY FOR TRANSIENT # 1

Al KMAX1 KMIN1
0.5000 1.2608 0.0000
1.0000 1.8327 0.0000
1.5000 2.3249 0.0000

Figure 4.1.2.5-2. Typical Output for Configuration 205 Including r/W Warning

In future
NASCRAC™
releases, a minimum
update to this
solution should
include this /W
warning on the K vs
a results page as
well as the
geometry page. The
best resolution of
this potential
problem is to
prevent an analyst
from specifying an

uncoded r/W
configuration by
including a

geometry error flag.
This error checking
approach will force
the analyst to bound
or extrapolate his
configuration using

the coded solutions and will also force the analyst to recognize the assumptions and limitations

of the K solution.

4.1.2.6 Configuration 206 (Edge Crack in a Solid Disk)

Figure 4.1.2.6-1 displays the geometry of configuration 206, edge crack in a solid disk.
This solution consists of a uniform tension solution and a weight function solution. Closed form
solutions from [3] and FRANC were used to verify and validate this solution. Two types of
loads were applied to FRANC models: a traction and a crack face pressure. These load types,
which were designed to be equivalent load systems, resulted in similar K values as expected.

Representative results from the V/V studies are shown in Table 4.1.2.6-1.
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Figure 4.1.2.6-1. Geometry for Configuration 206, Edge Crack in a Solid Disk

Table 4.1.2.6-1. Representative Results for Configuration 206

Results from
NASCRAC™ and [3]
were identical for the
case of uniform tension
(case 1 in Table 4.1.2.5-
1). NASCRAC™ and
FRANC agreed within
10% for the variety of
loads listed in Table
4.1.2.5-1. In all 206
comparisons  with
FRANC, NASCRAC™
was conservative, i.e.,
the NASCRAC™ K
value was larger than
either FRANC value.

CASE | a | D o K The studies represented
™

NASCRAC 7| [3] FRANC by the tabulated

1 Jos| s 1000 1660 1660 | TRACTION: 1628 |~ = ¢ in Table
PRESSURE: 1613 P ,

05| s 500 + 200x 945 N/A | TRACTION: 910 | 4-1.2.6-1 verify the 2(_)6

3 05| 5 1500 - 200x 2449 N/A | TRACTION: 2349 | K vs a solution in
05| 5 |2000-800x +80x2 3021 N/A | TRACTION: 2760 | NASCRAC™,

PRESSURE: 2755
4.1.2.7
The geometry for -

configuration 207, axial (outer
diameter) crack in a hollow
cylinder, is shown in Figure
4.1.2.7-1. The K formulation for
this configuration is similar to
configuration 205. It includes a
uniform tension solution and a
weight function solution for
general loadings. The weight
function solution is available for
only a single r/W ratio, i.e., /W =
1. Table 4.1.2.7-1 lists
representative K results for this
configuration.

!

P

o

D

Figure 4.1.2.7-1. Geometry for Configuration 207, Axia! (od)
Crack in a Hollow Cylinder



Table 4.1.2.7-1. Representative Results for Configuration 207 As with configuration 203,

CASE| a [r | W S — K - NASCRAC™ does not prevent the
NASCRAC ™ I | FRANC | ser from analyzing geometries
1 Jo2]2]2 1000 938 913 | 914 s ; .

> BRI 10 317 308 | With /W ratios different from the
3 2144 1.0 4.48 4.35 coded solution of /W = 1. If an
4 51515 1.0 7.09 687 | uncoded ratio is specified
S Jwo]a]2 1000 3169 3374 | NASCRAC™ automatically uses
6 ]02]2]2] 800+800x 840 818 | 816 | one of its coded ratios to compute
7 021212 960 - 800x 811 789 ) 793 results and prints a warning on the

g8 j02]2]2 1200- 295 287 :
12000x+30000x2 geometry page of the output file

that the analysis was completed for
1/W = 1, not the ratio specified by
the user. This approach is not erroneous but, since NASCRAC™ is designed to be an
engineering tool, such logic increases the chances of human error.

1 computed using Romberg integration and the weight function from [5]

In future NASCRAC™ releases, a minimum update to this solution should include the
/W warning on the K vs a results page as well as the geometry page. The best resolution of this
potential problem is to include in error path in the code which would prevent an analyst from
specifying a configuration with r/W # 1. This approach will force the analyst to extrapolate his
configuration from the coded solution and will also force recognition of the assumptions used to
formulate the analysis.

4.1.2.8 Configuration 208 (Through Crack from a Hole in a Finite Plate)

The geometry for configuration 208, through crack from a hole in a plate, is shown in
Figure 4.1.2.8-1. This solution was adapted from NASA/FLAGRO and does not feature a
weight function solution. The loading in this K solution is restricted to uniform tension and/or a
pin load at the hole. Table 4.1.2.8-1 lists selected results from the 208 V/V studies.
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Figure 4.1.2.8-1. Geometry for Configuration 208, Through Crack from a Hole in a Plate
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Table 4.1.2.83-1. Representative Results for Conflguration 208

CASE | GEOMETRY LOAD a NASCRAC™ | FLAGRO { LITERATURE| FRANC

1 R=05 c=10 1.0 1.840 1.838 1.872 1.819
B=115 20 2229 2227 2220
wW=24 40 2.938 2936 2.788
H=24 8.625 5.243 5.241 4782
h=12

2 R=0.5 o =1.042 1.0 2.129 2.127 2.057
B=115 P=10 20 2478 2476 2392
W=24 40 3.187 3.185 2936
H=24 8.625 5.617 5.616 4.945
h=12

3 R=05 c=10 1.0 1.862 1.860 1.872 1.832
B=6.0 20 2.300 2308 2.268
W=24 45 4.077 4.075 3.829
H=24
h=12

4 R=0.5 6 =1.077 1.0 2221 2218 2.145
B=6.0 P=10 20 2.648 2.646 2478
W=24 45 4.554 4.554 4.087
H=24
h=12

5 R=0S5 =10 1.0 1.961 1.958 1.872 1.905
B=3.0 225 3.307 3305 2932
W=24
H=24
h=12

6 R=05 o=1.143 1.0 2.468 2465 2.235
B=3.0 P=1.0 2.25 3.991 3.988 3304
W=24
H=24
h=12

7 R=0.5 6=10 10 1.840 1.873 1.872 1.853
B=115 20 2229 2227 2.282
W=24 8.625 5.243 5.241 5.816
H=24
h=6

8 R=0.5 o=1.042 1.0 2.129 2.127 2.118
B=115 P=10 2.0 2.478 2.476 2.499
W=24 8.625 5.617 5.616 6.001
H=2
h=6

9 R=05 o=10 1.0 1.862 1.860 1.872 1.883
B=6.0 2.0 2309 2308 2330
W=24
H=24
h=6

10 |RrR=05 o=1.077 1.0 2221 2218 2.166
B=6.0 P=10 20 2.648 2.646 2571
W=24
H=24
h=6
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Table 4.1.2.8-1. Representative Results for Configuration 208 (Continued)

CASE | GEOMETRY LOAD a NASCRAC™ | FLAGRO [ LITERATURE| FRANC

11 |R=05 =10 1.0 1.961 1.958 1.87% 1.919
B=30 225 3307 3305 3.004
W=24
H=24
h=6

12 |[R=05 c=1143 1.0 2.468 2.465 2.253
B=30 P=10 225 3.991 3.988 3.381
W=24
H=24
h=6

13 |R=10 c=1.0 1.0 2342 2.422 2.342
B=11.0 2.0 2.643 2.640 2.652 2.674
wW=2%4 8.25 5.598 5.595 5.523
H=24
h=12

14 |R=10 o=1.042 1.0 2.896 2.619
B=11.0 P=10 20 2935 3.112 2.878
W=24 8.25 6.008 6.182 5.525
H=24
h=12

15 [R=1.0 =10 1.0 2424 2.422 2.382
B=50 2.0 2.872 2.869 2.652 2.806
W=24 3.75 4501 4.497 4.172
H=24
h=12

16 JR=1.0 c=1.083 1.0 3.096 2.679
B=50 P=10 20 3307 4.499 3.084
W=2A4 375 5.087 5.293 4.509
H=24
h=12

17 |R=20 =10 1.0 3377 3372 3.072
B=5.0 2.0 3.885 3.879 3412
W=24 3.75 5.882 5.875 3.732
H=24
h=12

18 |R=20 =10 1.0 3.903 4354
B=50 P=1.0 2.0 4.437 4.794
W =24 3.75 6.641 6.952
H=24
h=12

19 [R=50 =10 05 4.29 3917
B=50 1.0 5.41 5.167
W =20 20 6.72 6.927
H =40 3.0 8.32 8.847
h=12 35 9.45 10.157

NASCRAC™ results compares favorably with the results from NASA/FLAGRO,
FRANC, [2], and [7] listed in Table 4.1.2.8-1. The comparison between NASCRAC™ and [2] is
better for cases where the remaining ligament is large compared to the crack length (cases 1, 3, 7,
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9, 13) because [2] does not account for edge effects. Differences between NASCRAC™ and [2]
occur for shorter ligaments (cases 5, 11, 15, and 17). In these cases NASCRAC™ appears to
correctly model the edge effect based on comparisons with FRANC. Results from [7] were
developed by assuming a 3/x stress distribution along the crack plane where x = 1 at the crack
mouth and x = 2 at the plate edge. This distribution approximates the analytical solution for
stress concentration at a circular hole in a plate subjected to uniform tension. Case 19 provides a
comparison between NASCRAC™ and [7], a weight function solution for a 3/x stress
distribution. The results from case 19 show reasonable agreement between NASCRAC™ and
[7] even though the stress distribution in [7] only approximated the stress on the crack plane in
NASCRAC™,

The minor differences between NASCRAC™ and FLAGRO results in Table 4.1.2.8-1
were unexpected since the NASCRAC™ solution was taken from FLAGRO. A comparison of
the source codes revealed a minor coding difference: a transposition of digits in the assignment
statement for FOZ in FUNCTION FCT208 (GO in SUBROUTINE SITC03 in FLAGRO).

References [7] and [10] plus FRANC results indicated a dependency of K on plate height
to width ratio. Table 4.1.2.8-2 lists selected results from [10] and FRANC which confirm this
dependency. These results and discussion in the [7] suggest that K is independent of plate height
for plate to width ratios (H/W) 2 2. NASCRAC™, which does not require H as input, is in good
agreement with [10] and FRANC for such ratios. However, for H/W < 2, NASCRAC™ differs
from the reference solutions by 10-30%. These results suggest that the NASCRAC™ solution is
valid for H/W 2 2, reasonable for 1 < H/'W < 2, and non-conservative (and therefore not
valid) for H/W < 1. Warnings in the documentation, onscreen, and in printouts should inform
users that use of the solution for cases where H/W < 2 is marginally acceptable and should be
used with caution. The results in Table 4.1.2.8-1 generally did not reflect this dependency
because the plate dimensions were large compared to the hole and crack dimensions.

Table 4.1.2.8-2. Representative 208 Results Showing Dependency on Height to Width Ratlo (H/W)

HW GEOMETRY a NASCRAC™ [10] FRANC
0.5 R=20 1.0 331 5.05
B=6.0 2.0 3N 6.33
W=16 3.0 4.26 775
4.0 5.18 9.16
1.0 R=20 1.0 331 3.76 372
B=60 1.6 355 420 4.18
W=16 2.0 n 547 5.46
2.8 4.13
40 5.18
2.0 R=20 1.0 331 334 334
B=6.0 1.6 3.55 3.56 356
W =16 2.0 3.71 3.71 3.74
2.8 4.13 4.10 4.14
40 5.18 5.13 5.18
3.0 R=20 1.0 331 334 333
B=6.0 2.0 3.7 3.69 3.71
W=16 4.0 5.18 507 5.17
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The NASCRAC™ user's manual and theory manual indicate only pin and uniform
tension loads are available for this solution. This is in agreement with the formulation adapted
from FLAGRO. Additionally, if a user attempts to use another type load, NASCRAC™ flags the
input as a fatal error and will not execute. However, in the source code, a weight function
solution for general loadings is included. A future release of NASCRAC™ should permit the
user to access this function if it is valid.

4.1.2.9 Configuration 209 (Through Crack from a Hole in a Lug)

Figure 4.1.2.9-1 displays the geometry of NASCRAC™ configuration 209, through crack from a
hole in a lug. This solution was adapted from NASA/FLAGRO and does not feature a weight
function solution. The loading in this K solution is restricted to a pin load at the hole. Table
4.1.2.9-1 lists selected results for configuration 209.

REREER
P e
B

[N

Figure 4.1.2.9-1. Geometry for Configuration 209, Through Crack from a Hole in a Lug

NASCRAC™ compared favorably with [12] and FRANC, and identically matched the
results from FLAGRO. Figure 4.1.2.9-2 shows results of NASCRAC™ and [12]. The trends in
the results are identical although NASCRAC™ was consistently conservative by as much as
20%. For the FRANC calculations, two different loadings were applied to finite element model:
a point load at the center of the hole and a distributed load along the surface of the hole. In each
case, the total load was equal to 1 1b;. The results, which are tabulated in Table 4.1.2.9-1, show
little difference between the two load configurations and a maximum difference of 8% between
NASCRAC™ and FRANC. Table 4.1.2.9-1 also lists the selected FLAGRO results. Based on
the identical agreement between NASCRAC™ and FLAGRO, this solution is coded correctly.
Furthermore, the favorable comparison between NASCRAC™, FRANC, and [12] verifies this
NASCRAC™ solution.
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Figure 4-1.2.9-2. K versus @ Comparison Between NASCRAC™ and [12] for 209
(a) r =1.125", R = 2.8125" (b) r=1.125",R = 4.5

Table 4.1.2.9-1. Representative Results for Configuration 209 with r = 1.125", R =3.375"

CASE a o P NASCRAC™ FLAGRO FRANC
1 1.0 1.0 0.6161 0.6161 0.6678
1.5 0.7035 0.7035 0.7093
2 1.0 1.0 0.6161 0.6569
1.5 0.7035 0.6976

4.1.3 300 SERIES RESULTS

There are three 300 series K solutions in NASCRAC™. These solutions model through
cracks in cylinders and spheres. All three solutions were found to be valid. Representative V/V
results and suggestions to improve the NASCRAC™ range checking capabilities and clarify the
documentation are described in the following subsections.

4.1.3.1 Configuration 301 (Through Crack in a Sphere)

Figure 4.1.3.1-1 shows the geometry of
configuration 301, through crack in a sphere. This
solution is formulated as a uniform tension solution;
therefore, this formulation is only applicable to a thin
walled pressure vessel subjected to internal pressures.
Table 4.1.3.1-1 shows comparative results from
representative V/V cases. In this table R represents the
outer radius of the sphere and A is a function of a, t
(thickness), and R. In addition to the tabulated results in
Table 4.1.3.2-1, a spreadsheet of f(A) results computed
with the equation coded in NASCRAC™ compared
favorably to an f(3) plot in [2]. f(3) is the B function for
this solution such that K = f(l)c\fna.

g

Figure 4.1.3.1-1. Geometry for Configuration
301, Through Crack in a Sphere.
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Table 4.1.3.1-1, Representative Results for Configuration 301

a R t c A=a/N(tR) f(A) | KNASCRACT™™ Kiz
0.1 2 0.2 1.0 0.158 1.02 0.57 0.57
05 2 0.2 1.0 0.791 138 1.71 1.73
1.0 2 0.2 1.0 158 2.18 3.76 3.86
1.5 2 02 1.0 237 3.08 6.53 6.69
1.0 10 0.1 1.0 1.00 1.57 2.77 2.78
20 10 0.1 1.0 2.00 2.63 6.60 6.59
3.0 10 0.1 1.0 3.00 3.88 11.77 1191

No errors were found in the K solution for this configuration; however, the NASCRAC™
documentation does not clearly define the radius to be input. Figures in the NASCRAC™
documentation (user’s and theory manuals) and in [2] indicate that the required radius is the
outer radius of the sphere; however, in the NASCRAC™ source code the solution has been
coded for a midsurface radius input. The outer radius R is then calculated from the input radius
by adding one-half the sphere wall thickness. This discrepancy is insignificant for thin shell
inputs, i.e., t <0.1R. For the extreme case, i.e., t = 0.1R, the discrepancy in A = a/N(t Rpiq) and A
= a/N(t R) is less than 3% and the corresponding change in the correction factor f(A) of the
solution is less than 0.0013.

Three minor changes would improve the usability of this solution. First, a note should be
included in the user's manual and onscreen stating that thin shell theory is assumed and no
bending effects are considered. Secondly, the user's manual should clearly identify which radius
(midsurface radius) is required for input. Finally, an error flag should be included in the code to
detect specified geometries which do not meet thin shell requirements.

4.1.3.2

Figure 4.1.3.2-1 shows the geom- I - oW . I

etry of configuration 302, axial through

crack in a cylinder. This solution is L_t ﬁ_ - 1
formulated as a uniform tension solution. 2a

Table 4.1.3.2-1 shows comparative results rr—r Y 2R
of f(A) and K for representative V/V cases. | Oz i _ A J
In this table R represents the outer radius

of the cylinder and A is a function of a, t

(tth@CSS), _and R. f(a) is the B function Figure 4.1.3.2-1. Geometry for Configuration 302, Axial
for this solution such that K = f(k)o’\/na. Through Crack in a Cylinder
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Table 4.13.2-1. Representative Results for Configuration 302

CASE a A=a/V(tR) fM | fAnascrac™ | Kz Knascrac™

R=2 0.1 0.158 1.02 1.06 0572 0.593
t=02 0.5 0.791 1.38 1.48 1.730 1.872
c=10 1.0 1.58 2.02 2.18 3.580 3.932
15 237 2.75 292 5970 6.453

20 3.16 342 3.63 8.573 9.291
4.0 6.32 6.10 21.988
6.0 9.49 7.67 33.640

R=10 1.0 1.0 1.55 1.65 2.747 2936
t=0.1 2.0 2.0 242 2.57 6.066 6.455
o=1.0 50 5.0 5.16 20.479
10.0 10.0 7.82 43.885

NASCRAC™ and [2] are in reasonable agreement for 302 K vs a calculations. From
Table 4.1.3.2-1, the differences between the two solutions are due to differences in f(A).
NASCRAC™ uses a curve fit to compute these values whereas the [2] results were obtained
from a graph. The higher values of f(A) in NASCRAC™ are reflected in the calculated stress
intensity factor. The f(A) curve fit equation in the NASCRAC™ source does identically match
the equation listed in the FLAGRO manual [13], which was the source for this solution. [13]
adapted the solution from [14] and lists the valid range as 0 <A < 10. [2], however, lists the valid
range as 0 <A <5. This range is supported by [3], which uses a different f(A) curve fit from [13].
The equivalency of f(A) in NASCRAC™ and FLAGRO verifies this solution. This solution is
valid based on the reasonable agreement of K between NASCRAC™ and [2] in addition to
reasonable agreement of f(A) among NASCRAC™, [2], and [3].

The definition of the required input radius is not clear in the NASCRAC™
documentation. Figures in the NASCRAC™ documentation (user’s and theory manuals)
indicate that the required radius is the inner radius of the cylinder; however, in [2] an outer radius
is depicted. Additionally, NASCRAC™ has been coded such that one-half the cylinder wall
thickness is added to the input radius to obtain the radius used in the A calculation.

Three minor changes would improve the usability of this solution. First, a note should be
included in the user's manual and onscreen stating that thin shell theory is assumed and no
bending effects are considered. Secondly, the user's manual should clearly identify which radius
(midsurface radius) is required for input. Finally, an error flag should be included in the code to
detect specified geometries which do not meet thin shell requirements.

4.1.3.3 i i f ial Th i lin

The geometry for configuration 303, circumferential through crack in a cylinder, is
shown in Figure 4.1.3.3-1. Table 4.1.3.3-1 presents V/V results from this configuration. This
solution was formulated for uniform tension and bending loads using superposition. In Table
4.1.3.3-1, R;is the inner radius of the cylinder, t is the cylinder wall thickness, o is the uniform
tensile stress, and oy, is the bending stress.
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Figure 4.1.3.3-1. Geometry for Configuration 303, Circumferential Through Crack in a Cylinder

Table 4.13.3-1. Representative Results for Configuration 303

a R t O+ 0y Knascrac™ Kne Ky Kns)
1.0 50 0.5 1.0+ 00 1.878 1.878 1.88 1.87
15 50 05 1.0+ 0.0 2.458 2.458
19 50 05 1.0 + 0.0 2.948 2.948
1.0 50 05 10+1.0 3.752 3752
1.5 50 0.5 1.0+1.0 4.895 4.895
1.9 5.0 05 10+1.0 5.853 5.853

The 303 X vs a solution in NASCRAC™ was adapted from [16]. The identical
agreement between NASCRAC™ and [16] results in Table 4.1.3.3-1 verifies and validates this
solution. [2] and [15] provided a spot check of [16].

The NASCRAC™ documentation for this solution did contain several oversights. First,
the documentation needs to clearly state that the computed K value corresponds to the
midsurface of the cylinder wall. Thus, no local bending of the pressure vessel is computed. In
reality, a higher K will occur at the inner or outer surface of the cylinder wall although the
discrepancy should be minor for a thin-walled cylinder. This local bending occurs even in the
uniform tension case (see [2] and [15]) and therefore is not due to the input bending stress.
Second, the NASCRAC™ solution is hardwired for a Poisson's ratio of 0.3. This value is
included in the shell parameter ¢ where & = (VR pmig) (12(1-v2))0-25. For v between 0.1 and 0.33 ¢
does not vary much and therefore the hardwired value should be acceptable. This assumption
should be documented. Finally, the NASCRAC™ documentation in the theory manual contains
at least three typographical mistakes which are misleading. The mistakes and the corrections are
listed in Table 4.1.3.3-2. The corrections were obtained from [16].
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Table 4.1.3.3-2. Documentation Errors for Configuration 303

nC2 2 rC2
I0=m2 [g(a)+T 215y - > IO:-O::— [g(a)+T 215

T
C=t+2A2 0029332 >  C=1 *TnZ A2 .0.0293 23
O T 1
A= Vnt A i’ A= 2

4.1.4 400 SERIES RESULTS

The four 400 series K solutions in NASCRAC™ model specific surface crack
configurations in hollow and solid cylinders. These solutions were verified and validated using
published results and direct integration of weight functions from the literature. In addition, for
configuration 404, edge crack in a solid circular bar, NASCRAC™ results were checked versus
FLAGRO and FRANC computations. Configuration 404 was the only solution from this series
which could not be validated unequivocally.

4.14.1

Figure 4.1.4.1-1 €
shows the geometry of ‘ﬂt I ﬁ
configuration 401, circum- t
ferential crack (id) in a
hollow cylinder. The K

formulation for this con- *l l__
figuration includes a uni- - ' —l»x
I
I
1

form tension solution and a I
weight function solution for l
general loadings. Rep- L

: Rlyy 1!
resentative V/Y results ‘HL I \U/U
are presented in Table 4_w_>‘4_:u_> W
4.1.4.1-1.

Figure 4.1.4.1-1. Geometry for Configuration 401, Circumferential Crack (id)
in a Hollow Cylinder
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Table 4.1.4.1-1. Representative Results for Conflguration 401 The coded uniform tension

PAR““:":ERS - ;15 KNSQ%CTM ';1';';% algorithm was developed by curve fitting
:; LS 0.60 L7387 17607 the data in [3]. This data is valid for 0.1
=10 0.90 24231 2.51M < 1/(r+t) £ 0.9. NASCRAC™ does not
1=40 0.01 0223 0.225(7 prevent the user from analyzing r/(r+t)
t=10 030 1.190 1.1917) ratios outside this range, which is an
c=10 0.60 39.630 39-6331”] oversight in the code that should be
r=45 0.005 0.1406 0.14 corrected using an error check on the
t=05 0.15 0.9649 096" . ‘g . .
G=10 030 1.9404 197 input values. Validation of this uniform
T=50 0.125 07331 072700 tension solution was based on comparison
t=10 0.250 1.1181 111707 with [7] and [17]; therefore, the solution
c=10 0.500 1.9406 2018"7 | is valid to the extent that [7] and [17] are

0.750 3.1937 3_300[17] valid.
r=5.0 0.0625 0.5297 0527117
t=05 0.125 0.8451 [1n . . .

0.827
510 0250 16031 - The 401 weight function solution

1.613 f lated fi /t ratios: r/t=15

0375 2.7541 : was formulated for two r/t ratios: 1/t
17 .

2-703[17]] and r/t = 10. The code permits all r/t
r=50 0.03125 0.3843 0382 ratios to be analyzed. For r/t < 7.5, the
t=0.25 0.0625 0.6461 060317 ) ; _ X
c=10 0.1250 13419 Ly7oliT weight function solution for r/t = 5 is

0.1875 23896 5915117 used and if 1/t > 7.5, the solution for r/t =

10 is used to calculate K. NASCRAC™
does issue a warning in the output file informing the user of the weight function employed.
Validation of the 401 weight function solution was not completed because a reference was not
found. The bending solution in [3] could not be used as a reference for comparison with a linear
stress distribution and the weight function solution because NASCRAC™ requires axisymmetric

loads.

4.14.2 Configuration 402 (Circumferential Crack in a Solid Cylinder)

Figure 4.1.4.2-1 displays the geometry of configuration 402, circumferential crack in a
solid cylinder. This solution was adapted from FLAGRO and is programmed for uniform
tension loads only. The FLAGRO solution, which is based on [3], also includes only uniform
tension loads although [3] presents a K solution for bending. A fatal error occurs during
NASCRAC™ execution if a bending load is applied.

Representative V/V results are presented in Table 4.1.4.2-1. A comparison of the source
code to equations in [3] indicated a very minor typographical error in cubed term of the G
equation in the NASCRAC™ function S402U. The programmed coefficient is -0.1875 but
should be -0.1815. This difference is not significant and thus the NASCRAC™ results listed in
Table 4.1.4.2-1 are almost identical to the reference results. The reasonable agreement between
NASCRAC™ and [3] validates this solution to the extent that [3] is valid.
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Figure 4.1.4.2-1. Geometry for Configuration 402, Circumferential Crack in a Solid Cylinder

Table 4.1.4.2-1. Representative Results for Configuration 402

PARAMETERS a KNA_SCRACTM Ky Km aGro
r=1.0 0.05 0.142 0.143 0.143
c=0.3183 0.50 0.758 0.758 0.758

0.95 25.229 25.230 25.229

r=1.0 0.05 0.223 0.224 0.225

=05 050 1.190 1.191 1.191
0.95 39.630 39.631 39.630

4.14.3
The geometry for o

configuration 403, circum-
ferential crack (od) in a
hollow cylinder, is shown in
Figure 4.1.4.3-1. The coded
solution, which is based on a
curve fit to the graphical
solution of [3], is limited to
0.05 £Ry/R,£0.95; however,
the solution in [3] only
contains results for 0.1 <
Ri/R, < 0.9. NASCRAC™
permits other configurations
(outside the 0.05 < R{/R, <
0.95) to be input but issues a
warning in the output file on

the configuration page. This NASCRAC™ K solution, like 402, is only valid for uniform

EEEERE]

Figure 4.1.4.3-1. Geometry for Configuration 403, Circumferential Crack (od)
in a Hollow Cylinder
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tension even though [3] contains both a uniform tension and a bending solution. Comparative
results from V/V simulations for 403 are shown in Table 4.1.4.3-1.

Table 4.1.4.3-1. Representative Results for Conflguration 403

PARAMETER a Knascrac™ | Ky Km Kp) KrLacro
=20 025 1.018 0.978 0.978
t=3.0 050 1.503 1.400 1.52 1.399
o=10 0.75 1.937 LT 1.771

1.00 2.374 2.156 239 2.156

1.25 2.848 2.593 2593

1.50 3.399 3123 345 3.123

1.75 4.087 3.807 3.807

200 5.010 4.753 501 4.753

225 6.361 6.181 6.181

2.50 8.611 8.661

1=45 0.05 0.462 0454 047 0454
t=05 0.10 0.714 0.666 072 0.71 0.666
¢=1.0 0.15 0.980 0.857 1.00 0.857
0.20 1.285 1.053 1.30 130 1.053

0.25 1.646 1.276 1.67 1.277

0.30 2.079 1.552 2.09 2.10 1.552

0.35 2.613 1.929 1.929

0.40 3.328 2.524 334 2.524

r=40 0.1 0.650 0.636 0.66 0.636
t=1.0 0.2 0.993 0.928 1.00 1.00 0.928
g=10 0.3 1.339 1.192 134 1.192
0.4 1.721 1.468 1.70 1.70 1.468

0.5 2.158 1.788 2.14 1.788

0.6 2.670 2.191 2.64 2.64 2.191

0.8 3304 2.751 2.7151

09 4.189 3.652 4.17 3.652

The results in Table 4.1.4.3-1 verify and validate this solution. NASCRAC™ appears to
be a more conservative solution compared to the graphical solution of [2] and NASA/FLAGRO.
The validity of the solution is dependent on the validity of [2], [3], and [7]. Since [2] and [3] are
well-known fracture references, the validity of this solution includes a high level of confidence.
[7] provides additional support of validity. The NASCRAC™ 403 solution should be restricted
to 0.1 < Ry/R, < 0.9 since it was obtained from [3], which was restricted to this range.
Additionally, since the solution is only valid for uniform tension, an error check should be
included in NASCRAC™ which would prevent non-uniform loads from being input.

4.144 i i id Ci

The NASCRAC™ K solution for configuration 404, edge crack in a solid circular bar, is
a FLAGRO solution developed in [18]. The solution is a curve fit based on test results and a
hypothetical crack front. The crack front model assumes that the crack is perpendicular to the
bar at the free surface. This crack front, which results in higher K values when compared to a
circular crack front whose center is at the surface of the bar, allows the crack to be specified
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using the crack length at the crack centerline and the radius of the bar. Figure 4.1.4.4-1 displays
this crack front definition. The crack front equations listed in this figure indicate that this
geometry is mathematically undefined for a/D 2 0.5; however, test results in [18] included cracks
with a/D < (0.6 and the curve fit in FLAGRO was calculated for a/D < 0.6. Thus, as a minimum,
the NASCRAC™ 404 K solution needs to be limited to a/D < 0.6. Preferably the limit should be
set to a/D < 0.5. To impose this limitation, an error flag should be included in the code to detect
a/D > 0.5 and the crack geometry should be clearly defined in the user's manual and onscreen

during execution.

b =R tan’! (i/R)

_a(2R-a)
r= -a

In configuration 404, K
varies symmetrically along the
crack front. Figure 4.1.4.4-2
depicts this varation, which is
about 10%. In this figure,
NASCRAC™ results are identical
to the results in [18]. The
NASCRAC™ results correspond to
K on the centerline of the crack
front. The NASCRAC™ docu-
mentation should discuss this
variation and clarify that
NASCRAC™ only calculates K at

Figure 4.1.4.4-1. Geometry for Configuration 404, Edge Crack in a

the midpoint of the crack, which is
the minimum K along the crack

Solid Circular Bar
front.
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The case where a/D = 0.5 deserves special attention. From the crack front equations
listed in Figure 4.1.4.4-1, the NASCRAC™ crack front would be straight for this case since a =
R and therefore r = eo. Several literature sources were available for straight front cracks; in
particular, NASCRAC™ results for a/D = 0.5 were compared to [19], [20] and FRANC results.
Table 4.1.4.4-1 lists results of these comparisons. [19] assumes a straight front crack whereas
reference {20] assumes an elliptical crack front for small a/D ratios but gradually permits the
crack front to become straight as the a/D ratio increases to 0.5. From Table 4.1.4.4-1 it is
apparent that NASCRAC™ agrees well with [20] and FRANC for small a/D ratios (< 0.3) but
diverges for larger a/D ratios. Compared to [19] (straight front crack) the NASCRAC™
computed K is consistently lower for all values of a/D. Additionally, FRANC results match [19]
and [20] when a/D = 0.5 (straight edge cracks). These results suggest that NASCRAC™ may
underestimate K by as much as 50% when a/D = 0.5, i.e., whena=R.

Table 4.1.4.4-1. Representative Results for Configuration 404

PARAMETERS a KnascraCTM K201 Kiy9) KrraANC
D=2R=100 1.0 2322 2.481
Ci+0p=10+10 2.0 3.527 3.835
3.0 4.950 5.793 477
4.0 6.940 9.086
5.0 9.986 14.169 13.88
6.0 15.108 22.537
D=2R=50 0.5 0.878 0.940
G+0p=10+0.0 1.0 1419 1.631 2.11
1.5 2.104 2.562
2.0 3.095 4.169 3.86
2.5 4.640 6.796
3.0 7.270 11.331 11.24
D=2R=10.0 1.0 1.241 1.329
Oy +0p=10+00 20 2.006 2.306 298
3.0 2.976 3.623 2.95
4.0 4377 5.895 5.46
5.0 6.561 9.611 9.58
6.0 10.281 16.025 15.90

The variation of K along the crack front and the inability of NASCRAC™ to account for
this variation will lead to errors during fatigue crack growth. The calculated K value in
NASCRAC™ is frequently the minimum K along the crack front. Thus, during fatigue crack
growth, the crack front at the free surface will have a higher rate of crack growth due to a higher
K value. This variation in crack growth rate would lead to a change in crack front shape until K
is uniform along the crack front. The uniform K crack tront is bounded by the NASCRAC™
model and a straight front crack.
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In summary, the 404 K solution in NASCRAC™ is valid for static checks of K where a/D
< 0.5 if the crack front of interest adheres to the condition of intersecting the free surface
perpendicularly. The geometry on which the NASCRAC™ curve fit model is based should be
fully identified in the NASCRAC™ user's manual and a corresponding explanation of the
geometry should be included onscreen. Warnings should be given when applying the model to
fatigue crack growth and for a/D 2 0.5. Results suggest that for a/D 2 0.5, NASCRAC™ is
nonconservative by as much as 50% compared to reference results for straight crack fronts. The
V/V results did show that K values for a propagated crack front whose initial shape matched the
NASCRAC™ model were bounded by the NASCRAC™ model and a straight crack front model.
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4.1.5 500 SERIES RESULTS

The 500 series in NASCRAC™ represent buried, four degree-of-freedom cracks. Only
one solution, configuration 502, buried elliptical crack, is available in this series. The geometry
for configuration 502 is shown in Figure 4.1.5-1. Representative results from V/V studies are
shown in Table 4.1.5-1. The FRANC results for larger geometries (W) = 5.0, W3 = 10.0) in
Table 4.1.5-1 compared well with the Irwin solution (see [4]) for a buried elliptical crack in an
infinite body.

Y J ""u

Figure 4.1.5-1. Geometry for Configuration 502, Buried Elliptical Crack

NASCRAC™ K vs a capability for configuration 502 is valid based on the comparisons
with FRANC shown in Table 4.1.5-1. Differences do exist between NASCRAC™ and FRANC
results but the general trends are the same and the differences are within 20%. Differences
between NASCRAC™ and FRANC generally were more pronounced for the crack tips along the
major axes of the ellipse (a3 and a4). For each of these cases, and especially for the non-uniform
loadings, NASCRAC™ remained conservative with respect to FRANC. One minor mistake in
the user's interface was observed: During the definition of the crack geometry, the program
requests the final aj to a; ratio as input when, in fact, the final a3 to a; ratio is required.
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Table 4.1.5-1. Representative Results from Configuration 502

PARAMETERS 2 a; c KNascrac™™ Krranc
INCHES | INCHES psi K@a, | K@a3 | K@a, | K@a,4
W;=W,=50 10 20 UNIFORM 1.0 139 1.18 1.4 1.02
W3 =W,=100 125 25 156 132 1.63 116
0 =0deg 15 3.0 1.72 145 1.80 1.28
W, =W, =30 1.0 2.0 UNIFORM 1.0 141 121 145 1.03
W3=W, =40 1.25 25 1.61 139 1.66 118
0 =0deg 15 30 1.82 1.63 1.89 134
W, =W,=30 1.0 20 UNIFORM 1.0 | 141 121 1.45 1.03
Wi=W,4=40 1.25 2.5 1.61 139 1.66 1.18
0 =120deg 1.5 30 1.82 1.63 1.89 135
W, =W, =50 1.0 20 LINEAR 069, | 068 | o071, | o058,
W;=W,=100 00-1.0 069! | 0502 | o71! | 0432
9 =0deg
W, =W,=30 10 2.0 LINEAR 071 084 | o7, | om,
Wi =W,=40 0.0-1.0 onl | 0372 | om3! | 0322
0 =0deg
W1 =W2=30 1.0 20 BI-LINEAR 0.64 0.72 0.66, 0.61,
W3 =W4 =40 00-1.0 om7! | 0482 | o791 | 0422
0 =0deg
Wi =W7=30 1.0 20 LINEAR 0.65, 0.81, 0.69, 0.69,
W3 =W4=40 0.0-1.0 0751 0.402 078 1 035 2
0 =120 deg
I K@a, 2. K@a,

4.1.6 600 SERIES RESULTS

NASCRAC™ includes three corner crack configurations in the 600 series: configurations
601, 602, and 605. These cracks each have two crack tips initially and hence two degrees-of-
freedom.

The NASCRAC™ models for configurations 601 corner crack from a hole in a plate, and
602, corner crack from a hole in a lug, are similar. Both were derived from FLAGRO and neither
incorporates a weight function. For each model, only simple loads may be applied (uniform
tension and/or pin load for 601 and a pin load for 602). The V/V process for each of these models
included literature sources and numerical analysis using FRANC and FLAGRO. V/V results
from these configurations indicate that results from NASCRAC™ and the references (FRANC,
FLAGRO, literature) are the same order of magnitude; however, NASCRAC™ differs non-
conservatively from the references by 20-40%.

NASCRAC™'s K vs a capability for configuration 605, corner crack in a plate, was
verified and validated using the literature and FRANC. The literature included references from
Newman and Raju and from Kobayashi and Enetanya for uniform tension loads. The Kobayashi
paper also included linear crack pressure loads. FRANC analyses were completed for both
uniform and linear loads where the linear loads were a superposition of uniform tension and
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bending loads across the thickness (W, dimension of the plate). The Kobayashi linear crack

pressure load configuration and the FRANC linear load configuration are not equivalent load
systems and hence cannot be compared.

4.1.6.1

The geometry for
configuration 601, corner || 1 1 T ?11 T ? 7
crack from a hole in a
plate, is shown in Figure w

4.1.6.1-1. A corresponding
FRANC3D boundary

element model is shown in

Figure 4.1.6.1-2. Figures -= aa_% t
4.1.6.1-3 through 4.1.6.1-7 a, ‘ or I
show results from the 601 |:E - -
computations. In each of P

these figures K's are plotted
versus the corresponding

crack length. Figures ‘ J J J J J J * \
4.1.6.1-3 and 4.1.6.1-5 Figure 4.1.6.1-1 Geometry for Configuration 601, Corner Crack from a Holz in a
indicate that NASCRAC™ Plate.

does not agree with

FLAGRO or FRANC when the applied load consists of a uniform stress. When the load is a pin
load and the hole diameter is large compared to the crack length, NASCRAC™ is in agreement
with the references (see Figures
4.1.6.1-4 and 4.1.6.1-6) for
small crack lengths. Figure
4.1.6.1-7 shows results from a
pin load case where the hole
diameter was small compared to
the crack length. These results
indicate that NASCRAC™ may
have trouble predicting the stress
intensity factor along the bore of
the hole (crack tip a3). This
result may be indicative of
NASCRAC™ handling of the
stress concentration caused by
the smaller radius hole or, to a

lesser degree, the distribution of Figure 4.1.6.1-2 Typical FRANC Boundary
the load in FRANC Element Modelfor Configuration 601
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Flgure 4.1.6.1-3. Configuration 601 in Uniform Tension, a/c = 1,r=4
a) K at Crack Tip into Plate, b) K at Crack Tip on Surface
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Figure 4.1.6.1-4. Configuration 601 with Pin Load, a/c=1,r=4
a) K at Crack Tip into Plate, b) K at Crack Tip on Surface
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Figure 4.1.6.1-5. Configuration 601 in Uniform Tension, a/c =0.5,r = 4
a) K at Crack Tip into Plate, b) K at Crack Tip on Surface
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Figure 4.1.6.1-6. Configuration 601 with Pin Load, a/c =0.5,r =4
a) K at Crack Tip into Plate, b) K at Crack Tip on Surface
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Figure 4.1.6.1-7. Configuration 601 with Pin Load, a/c=1,r =0.5
a) K at Crack Tip into Plate, b) K at Crack Tip on Surface

The trends displayed in the NASCRAC™ results appear to agree with FLAGRO and
FRANC. For example, in Figure 4.1.6.1-7, K at crack tip a; decreases as the crack length
increases. This decrease is reflected in all three sets of the plotted results. Another trend reflected
in the NASCRAC™ calculations is the percent change in the K values as the crack length
increases. This change is reflected in the five figures above. In a majority of the cases, the
absolute difference between NASCRAC™ and FRANC is nearly constant as the crack length
increases. A final trend of significance is the relative difference between a; and a;. In general, the
NASCRAC™ differences are less than those predicted by FRANC. For example, in Figure
4.1.6.1-4 above, the ratio of K at 2; to K at a; in NASCRAC™ varies from 1.11 to 1.16 whereas
in FRANC the ratio varies from 1.17 to 1.33.

The differences between NASCRAC™ and FLAGRO were unexpected since the
NASCRAC™ model was adapted from FLAGRO. A combination of two factors contribute to
these differences. The first factor is a minor error in the NASCRAC™ source code. This error is
displayed in the source code listing in Figure 4.1.6.1-8. FLAGRO uses 2B in the denominator of
the highlighted line whereas NASCRAC™ uses W. If 2B = W, which is the case for a centered
hole, the error disappears. In a trial run, by changing W in NASCRAC™ to 2B, the computed K
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at tip a; increased from 3.40 to 3.47 and the computed K at tip a; increased from 3.05 to 3.12 for
B = 8.0 and W = 12.0. The second factor that causes a difference between NASCRAC™ and
FLAGRO is NASCRAC™'s calculation of an RMS averaged K at each crack tip using Gaussian
quadrature. RMS averaging computes the K of interest by summing weighted values of K from
the entire crack surface. FLAGRO, conversely, directly calculates the two K's (one at 0 degrees
and one at 80 degrees) using equations identical to those in NASCRAC™ other than the minor
error shown in Figure 4.1.6.1-8. Based on the FRANC results, the applicability of the RMS logic
in NASCRAC™ may not be valid even though the logic is verified. One final difference can be
documented between NASCRAC™ and FLAGRO: FLAGRO accepts bending loads but
NASCRAC™, when adapting the solution, omitted bending loads and only permits uniform
tension and pin loads.

NASCRAC™
FUNCTION CCO2 (PHI)
Y = D/W
V = Aa/T
XL=.5*PI*SQRT (V) * (D+C) / H-C)

FW=SQRT (SIN(BETA) / (BETA*COS (XL) *COS (.5*PI*Y)))
RETURN
END

FLAGRO

SUBROUTINE SICCO02 (MODE,LOCN, CREMEN, SMIN4, SMAX4, SYLD1, CAYC1,
A, AOC,NSQUAN, IHDSQ,META, SR, DELTAK, CAYMAX,
& FO,F1,F2,F3,Q,NJOB,NETMSG, IACMSG, IYZMSG, *, *)

GWCOEF= (DSIN(BETA) /BETA) /DCOS (PIOVR2*D/W)
GW=DSQRT (GWCOEF /DCOS (PIOVR2*DSQRT (AOT) * (D+C) / ®aigs-C) ) )

RETURN
END
Figure 4.1.6.1-8. CC02 Source Code in NASCRACT_M and FLAGRO HIghlighting Difference In Codes

4.1.6.2 Configuration 602 (Corner Crack from a Hole in a Lug)

The geometry for configuration 602, corner crack from a hole in a lug, is shown in Figure
4.1.6.2-1. A corresponding FRANC3D boundary element model is shown in Figure 4.1.6.2-2.
The NASCRAC™ 602 K solution computes stress intensity factors of the same order of
magnitude as FLAGRO and FRANC; however, the NASCRAC™ values are significantly non-
conservative (by 20-35% for large diameter holes and 50-100% for small diameter holes)
compared to FRANC and slightly less than the FLAGRO results, even though the NASCRAC™
solution was adapted from FLAGRO. This slight discrepancy is caused by two factors: 1)
NASCRAC™'s calculation of an RMS averaged K at each crack tip using Gaussian quadrature as
compared to FLAGRO's direct calculation of K at specific angles (0 degrees, 80 degrees) along the
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crack front, and 2) a typographical error in the equation for Gy in the function SICCO03. This error,
which is simply a transposition of two digits, is shown in Figure 4.1.6.2-3.

Figure 4.1.6.2-1. Geometry for Configuration 602, Corner Crack from a Hole in a
Lg

Figure 4.1.62-2 Typical FRANC Boundary
Element Model for Conflguration 602
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NASCRACT
FUNCTION CCO3 (PHI)
F02=0.7071+2* [JRER+2* (. 341542* (. 642+.9196%2)))
Fl2=2* (.078+42* (.7588+Z2* (-.4293+2*(.0644+2*.651))))
GO=F0Z/DS

FO=(0.5*G0*Y + G1)*GW

CC03=F0
RETURN
END
FLAGRO
SUBROUTINE SICCO3(MODE, LOCN, CREMEN, SMIN4, SMAX4, SYLD1, CAYC1,
& A, AOC,NSQUAN, IHDSQ, META, SR, DELTAK, CAYMAX,
& F0,F1,F2,F3,Q,NJOB, NETMSG, IACMSG, IYZMSG, *, *)

caPG0 = (.707100 + z* (JEERIIRY + z*(.3415D0 + 2*(.642D0
+ 2*.9196D0 ) ) ) / DENOM
RETURN
END
Figure 4.1.62-3. CC03 Source Code in NASCRAC™ and FLAGRO Highlighting Difference in Codes

Figures 4.1.6.2-4 through 4.1.6.2-6 display plots of K values versus the corresponding
crack lengths for configuration 602. In all cases, the applied pin load was 1 lbs. The figures show
that NASCRAC™ and FLAGRO are in better agreement than they were for configuration 601.
Only in the case of the small radius hole (Figure 4.1.6.2-6) is there appreciable difference at the
crack tip along the bore of the hole (crack tip a3). This is probably a result of FLAGRO's point
solution versus NASCRAC™'s averaged solution.

In all the cases presented in Figures 4.1.6.2-4 through 4.1.6.2-6, NASCRAC™ is non-
conservative compared to FRANC. This non-conservativism increases as the crack length
increases and is more pronounced at crack tip a;. Since FRANC is a refined finite element
program adept at handling the stress fields around the hole, the FRANC results provide a higher
level of confidence.

The 602 results plotted in Figures 4.1.6.2-4 through 4.1.6.2-6 show that relative differences
in K for various crack lengths are similar in NASCRAC™ compared to FRANC and FLAGRO.
For example, in Figure 4.1.6.2-4a (crack tip a;) the percent increase in K froma; =1 toa; = 21s
23% in NASCRAC™ compared to 26% for FLAGRO and 33% for FRANC. Similarly, for
crack tip a3 (Figure 4-.1.6.2-4b), the percent increase in K from a; = 1 toa; = 2 for NASCRAC™
is 33% compared to 37% for FLAGRO and 36% for FRANC.
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Figure 4.1.6.2-6. Configuration 602 with Pin Load, a/c=1,r =05
a) K at Crack Tip into Plate, b) K at Crack Tip on Surface
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4.1.6.3 Configuration 605 (Quarter Elliptical Corner Crack in a Plate)

Figure 4.1.6-3-1 displays the geometry for configuration 605, quarter-elliptical corner
crack in plate. 605 V/V results are presented in Figures 4.1.6.3-2 through 4.1.6.3-4. Figures
4.1.6.3-2 and 4.1.6.3-3 present three cases. Case 1 consists of W] = 20.0 and W2 = 2.0. Case 2
consists of W1= 10.0 and W2 = 0.8. The final geometry, case 3, consists of W1 = 10.0 and W2
= (0.2. Figure 4.1.6-3-1 defines W] and W2. Figure 4.1.6.3-2 displays plots of K vs a/W from
NASCRAC™, FLAGRO, FRANC, and [21] for three different crack geometries subjected to
uniform tension. These results indicate that NASCRAC™ calculates reasonable values of K for
uniform tension loads. In case 1 where NASCRAC™'s K value at a; is non-conservative, the
maximum difference is less than 15%. As the crack becomes smaller (cases 2 and 3), the
difference between NASCRAC™ and the references becomes smaller. For K at a;, NASCRAC is
consistently conservative. NASCRAC™ does issue a waming when a/W, exceeds 0.6 which
states that the accuracy limitations of the solution have been exceeded; thus, the non-conservative
results for K at a; occur beyond the limitations of the solution. The actual warning issued is for
a;/W1 but this warning is incorrect. The warning should reference a;/W, for the cases studied.

Figure 4.1.6.3-3 )
presents K vs a/W results
from NASCRAC™ and }
[22] for the three crack w
geometries subjected to a - >
linear crack face pressure.

oy 4

This figure indicates that || [" % ’ w
reasonable agreement | s, i 2
between NASCRAC™ and s

[22] exists for this loading 4—1-4 w, J

at a; but not at a;. The
disagreement at a; is due to
finite width effects. The
solution in [22] is for an 1
semi-infinite plate; hence, Ozi%)
the NASCRAC™ a; results Figure 4.1.6.3-1. Geometry for Conﬂ:l:'a;:: 605, Quarter-Elliptical Corner Crack

are more reasonable because
K should increase as a; approaches the plate edge.

A final validation analysis of the 605 K solution was completed for a bending load across
the width. This analysis was completed by comparison to FRANC for a plate width W, = 10", a
plate thickness W5 = 0.8", and a constant crack aspect ratio az/a; = 0.4. The load decreased linearly
from 1 ksi at the cracked edge to 0. FRANC K results for this geometry are shown in Figure
4.1.6.3-4. In this figure, crack tip a, (along the plate thickness) corresponds to O on the x-axis and
crack tip aj (along the plate width) corresponds to 1 on the x-axis. A comparison of these
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graphical results and corresponding NASCRAC™ results is tabulated in Table 4.1.6.3-1. These
tabulated results indicate that NASCRAC™ and FRANC are in good agreement for bending loads;
therefore, these results verify the NASCRAC™ 605 K solution for bending in the plane of the
plate (about the y-axis).

5 5
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4}|— — FLAGRO 1 4 [— — FLAGRO
= e Newman &Raju o~ ~ === Newman &Raju
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Figure 4.1.63-2. Uniform Tension Load Results from NASCRAC™ and References
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Figure 4.1.6.3-3. Linear Crack face Pressure Results for 605
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Table 4.1.6.3-1. Comparative Results for Configuration 605 Subjected to a Bending Load across the Plate Width

CRACK K@ a, CRACK K@ a,
LENGTH a, LENGTH a,
NASCRACT™ | FRANC NASCRAC™] FRANC
0.4 053 052 0.16 0.67 0.72
1.0 087 091 0.40 1.28 132
1.6 125 149 0.64 2,61 220

In summary, the NASCRAC™ 605 K solution is reasonable for uniform tension loads,
crack face pressure loads, and bending loads across the width (W) of the plate. The K values at a,
(along the width of the plate) are consistently in agreement with the references and hence can be
used with a higher level of confidence than the values at a; (along the plate thickness).

4.1.7 700 SERIES RESULTS

The four 700 series K vs a solutions in NASCRAC™ simulate surface cracks using semi-
elliptical crack models. These four solutions are based on the same weight function. This function
was originally developed for configuration 703, a semi-elliptical (circumferential) surface crack in
a cylinder. NASCRAC™ and the references were in agreement for both configurations 703 and
705, a semi-elliptical surface crack in a sphere. The only problem related to these configurations
was the potential for a through crack to develop without detection by NASCRAC™. In contrast,
the K results for configurations 702 and 704 exhibited differences compared to the references,
especially at the surface crack tip (a2). These differences are apparently due to RMS averaging.

4.1.7.1 Configuration 702 (Semi-Elliptical Surface Crack in a Plate)

Figure 4.1.7.1-1 displays the geometry for configuration 702, semi-elliptical surface crack
in a plate. Several literature sources were available for the analysis of this configuration.
Additionally, unpublished results from a round-robin study conducted by NASA/MSFC were
available. The primary literature source was [23], which described an empirical K equation for
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surface cracks. The results, shown in Figures 4.1.7.1-2 through 4.1.7.1-9, indicate that the
NASCRAC™ K model at the crack tip into the plate (crack tip aj) is valid for the case of uniform
tension (Figure 4.1.7.1-2). Figures 4.1.7.1-3 through 4.1.7.1-5 and Figure 4.1.7.1-9 indicate that
the NASCRAC™ model for crack tip aj in bending for crack tip to thickness ratios ajst <0.5.
These same figures show that NASCRAC™ differs from [23] at a; for bending when ajzt > 0.5.
For these cases, the reference values are believable because crack tip aj is in a region of
compressive stresses and hence a reduced or negative K value is expected. The trends shown by
NASCRAC™ for the bending cases appear reasonable. As the crack tip extends into the region of
compressive stress, the value of K is less. Additionally, as the crack becomes more circular (a/c
increases) the value of K at a; decreases. The combined bending and tension curves in Figures
4.1.7.1-6 through 4.1.7.1-8 show similar trends for crack tip aj, i.e., agreement between
NASCRAC™ and [23]is reasonable for small aj/t ratios but more disagreement occurs as aj/t
approaches 0.8. For crack tip ap, along the surface of the plate, NASCRAC™ was consistently
non-conservative versus the references for both bending and combined bending and tension
(Figures 4.1.7.1-6 through 4.1.7.1-8). NASCRAC™ also exhibited an unexpected trend for the
cases of linear and non-linear bending, as shown in Figures 4.1.7.1-3 through 4.1.7.1-5 and
4.1.7.1-7. In these figures the K value at aj (along the surface) decreased as the crack length
increased. This result is unexpected because this region incurs the maximum tensile stress.

RMS averaging causes the disagreement

) between NASCRAC™ and the references.
‘—L—a—‘—‘—} ] —>‘ RMS averaging computes K by summing
-1 w . weighted values of K over the entire crack
- . 2 8y surface. Thus, if part of the crack lies in a region
__l‘ 1 %__ " of compressive or reduced tensile stresses, the
averaged value of K at the crack tip of interest is

W, i less than a point calculation of the same K. This

* situation occurs in configuration 702 when

M‘ bending loads are applied. At crack tip a;, which
‘ is the tip into the plate, K should decrease as a,
% (1) becomes large, i.e., as a; propagates into the

Figure 4.1.7.1-1. Geometry for Configuration 702, . . " L.
Semi-Elliptical Surface Crack in a Plate region of compressive stress. This behavior is

observed in the [23] results plotted in Figures
4.1.7.1-3 through 4.1.7.1-9. As a, propagates into the compressive or reduced tensile (for
combined bending and tension) region, NASCRAC™ does a poor job of following the [23]
results because the NASCRAC™ computed K value is being influenced by the tensile stresses
near the surfaces of the crack. Converse logic applies to crack tip a;. Here, the crack tip remains in
a region of high tensile stress and thus K should increase in value as the crack length increases.
This behavior can be seen in the [23] results plotted in Figures 4.1.7.1-3 through 4.1.7.1-9. These
same figures show that the NASCRAC™ computed K at a2 begins to flatten out or decrease with
increasing crack length . This unexpected trend in the NASCRAC™ results is caused by the
influence of compressive stresses in the a; region of the crack surface.
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Figure 4.1.7.1-9. Configuration 702 in Non-Linear Bending: Results from a NASA/MSFC Round-Robin Study

4.1.7.2 Configuration 703 (Semi-Elliptical Circumferential Surface Crackina
Cvlinder)

Figure 4.1.7.2-1 displays the geometry for configuration 703, semi-elliptical
circumferential surface crack in a cylinder. Figures 4.1.7.2-2 through 4.1.7.2-10 present
comparative 703 results from NASCRAC™ and references. The results in these figures were
used to verify the NASCRAC™ 703 solution. Figures 4.1.7.2-11 and 4.1.7.2-12 illustrate
specifics to solution 703 which need to be documented for the NASCRAC™ user.
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Figure 4.1.7.2-1. Geometry for Configuration 703,
Semi-Elliptical Circumferential Surface Crack in a Cylinder

From Figures 4.1.7.2-2 through 4.1.7.2-
4, it is evident that NASCRAC™ agrees closely
with [24] and NASA/FLAGRO for uniform
loading and varying inner radii (R;) and a/c
ratos. In each case, NASCRAC™ provides the
most conservative estimate as a/t approaches
unity. From Figures 4.1.7.2-5 through 4.1.7.2-
10, where bending loads have been applied to
the cylinder, NASCRAC™ appears reasonable
but not conservative compared to [25] and is

consistently conservative compared to
NASA/FLAGRO. Although NASCRAC™ is

generally only about 70% of the [25] value, the trends of NASCRAC™ and [25] are almost

identical as a, /t increases.
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Figure 4.1.7.2-2. 703K vsajtfor r =5, a1/22 = 0.667, Uniform Stress = 1 psi
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Figure 4.1.7.2-10. 703K vs a; for r = 2.57, t = 0.306, Crack Radjus = 1.50, Linear Load ¢ = 0348 x + 0394

Figure 4.1.7.2-11 shows results of a parametric study to determine the sensitivity of the
NASCRAC™ 703 solution to the inner radius to wall thickness (1/t) ratio. The parametric study
proved that the NASCRAC™ solution is independent of this ratio. Figure 4.1.7.2-11 indicates that
K is slightly dependent on this ratio in the reference solutions.
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Figure 4.1.7.2-11. Parametric study to Check R/t Dependence of NASCRAC™ K Solution
a=02, ¢ =03, Unlform Stress = 1 psi

One shortcoming of the NASCRAC™ 703 solution is that pop-through goes undetected.
Figure 4.1.7.2-12 shows an example of pop-through. In this figure, for a constant aspect ratio of
ayfa) = 2 and a; = 1 initially, the crack popped through the cylinder wall when a; = 4 but
NASCRAC™ continued to calculate K for both a; and a;. This problem may be related to the
definition of the semi-ellipse because a; is along a curved surface whereas most of the
NASCRAC™ configurations (601, 602, 702, 704) define a; along a straight surface. In future
releases of NASCRAC™ an error check should be included in the code to detect and report the
occurrence of pop-through.

Figure 4.1.7.2-12,

8) a/c = 1.0; no pop through before Crack Axls Reaches back Surface
b) a/c = 0.5; pop through before Crack Axis Reaches the back Surface
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The results for the
NASCRAC™ 703 K solution
indicate that this solution provides
reasonable engineering solutions
compared to [24], [25], FLAGRO,
and FRANCG,; therefore, these results
verified NASCRAC™ 703.
However, only a limited number of
geometrical configurations were
available in the references. Thus,
the 703 solution is valid for these
reference configurations as well as
configurations that are similar in 1/t
and aspect ratio. For configurations



where the 1/t ratio is more similar to a thin walled cylinder, it is more conservative to assume a
through crack and use configuration 303, a circumferential through crack in a cylinder.

4.1.73 Configuration 704 (Semi-Elliptical Axial Surface Crack in a Cylinder)

Figure 4.1.7.3-1 shows the geometry for configuration 704, semi-elliptical axial surface
crack in a cylinder. This configuration was verified and validated using [26] - [28] and FLAGRO.
The NASCRAC™ model is reasonable for the crack tip extending into the cylinder thickness
(crack tip aj). For this crack tip, differences between NASCRAC™ and the references varied
from < 10% for uniform tension (Figure 4.1.7.3-2) and internal pressure induced stresses (Figure
4.1.7.3-3) to < 20% for linearly varying stresses (Figure 4.1.7.3-4) to < 30% for quadratically
varying stresses (Figure 4.1.7.3-5). For cases where differences exceeded these limits (aj/t = 0.8,
i.e., a crack 80% through the cylinder wall thickness) NASCRAC™ appeared more reasonable
than the references because it was more sensitive to the free surface ahead of a;. One drawback to
K at aj for 704 is that NASCRAC was generally non-conservative compared to the references (see
Figures 4.1.7.3-2 through 4.1.7.3-5). For K at ag NASCRAC™ predicted significantly
conservative values for the cases of linearly and quadratically varying stresses with differences
between NASCRAC™ and the references exceeding 80% for certain geometries. For uniform
stresses and internal pressure loadings, NASCRAC™ was reasonable (differences < 20%)
compared to the references. The internal pressure case was not too different from a uniform stress
case since the ratio of inner radius to wall thickness was 10 and the stresses in the wall varied from
10.52 psi at the inner radius to 9.52 at the outer radius.
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€

Figure 4.1.7.3-1. Geometry for Configuration 704, Semi-Elliptical Axial Surface Crack in a Cylinder
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4.1.74 i i-

The geometry of configuration 705, semi-elliptical surface crack in a sphere, is shown in
Figure 4.1.7.4-1. This configuration was verified for both thin and thick walled spheres. The
loading mechanism for verification and validation was internal pressure. For a thin walled
pressurized sphere, the membrane stresses in the sphere are o = pr/2t. For the thick walled
pressurized sphere, the membrane stresses are described by ¢ = (pR;3 (Ro3 - 2R3)) / (2R3 (R,3 -
2R;3)). Typical stress profiles for thick walled pressurized spheres are plotted in Figure 4.1.7.4-2.
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Figure 4.1.7.4-1. Geometry for Configuration
Sphere

70S, Semi-Elliptical Surface Crack in a Sphere

The graphs in Figure 4.1.7.4-3 through 4.1.7.4-7 display K vs a curves from
NASCRAC™ and FRANC results for five V/V cases. For each case, two graphs are given: 1) K
vs a; where a; is the crack depth into the wall thickness of the sphere, and 2) K vs a; where a; is
one-half the crack length along the inside surface of the sphere.

G705 Semi-Elliptical Surface Crack in a Sphere G705 Semi-Elliptical Surface Crack in a Sphere
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Figure 4.1.7.44. Thin-Walled Pressurized Sphere, p = 1 psi,a1/a2 =05, r=10",t=1"
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Figure 4.1.7.4-7. Thick-Walled Pressurized Sphere, p = 1.0 psi, aj/a2 = 0.5, r = 10", t = 5"

The plotted results above indicate that NASCRAC™ is in good agreement with FRANC
for all five cases considered and is conservative for all cases except K vs a; for case 5, Figure
4.1.7.4-7. This result is expected because case 5 is not physically meaningful as the crack
becomes large. As Figure 4.1.7.2-12 and the discussion in Section 4.1.7.2 indicate, this
NASCRAC™ solution has the potential to allow undetected crack pop-through. This result was
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easily detected in FRANC but was not flagged in the NASCRAC™ results. Other than this minor
pop-through flaw, this solution appears valid for both thin- and thick-walled pressurized spheres.

4.1.8 800 SERIES RESULTS

A single configuration, 801 (user defined K vs a table), is available in NASCRAC™ under
the 800 series. 801 is a solution which accepts a user defined K vs a table as input. This
configuration is useful when K vs a results are available from tests or simulations but the geometry
is not one of the standard geometries in NASCRAC™. The solution uses tabular lookup and
interpolation/extrapolation.

Table 4.1.8-1 shows three cases used to verify K vs a for configuration 801. In the table,
the second column displays the K vs a tabular values that were input into NASCRAC™. The
three cases in the table include a backward linear extrapolation, a linear interpolation, and a forward
linear extrapolation.

The data listed in the third and fourth  Table 4.1.8-1. Representative Results from Configuration

columns of Table 4.1.8-1 indicate an error in - "I‘(” —
the forward extrapolation case. NASCRAC™ 2 | User. | NascRac™ | CALCULATED

does not extrapolate forward correctly because DEFINED
a DO loop counter is used incorrectly to index
the user defined data table (see code listing in

Jes]

ACKWARD LINEAR EXTRAPOLATION

Figure 4.1.8-1). If the crack length (XA) 201 37120
exceeds all tabulated crack lengths, the DO 22 3.8075 3.8075
loop (DO 40) increments its index one final 241 39030

time such that ISTR = MAXDAT + 1. This
sets up the interpolation indices such that K =
MAXDAT + 1 and J = MAXDAT. Since 2 22300 29300
there is no data for crack length 1.0 | 33071
(MAXDAT+1) and K (MAXDAT+1), the 12| 33909
linear extrapolation is no longer valid and the
NASCRAC™ computed K is simply a ratio

LINEAR INTERPOLATION

FORWARD LINEAR EXTRAPOLATION

of the final K value in the table. To correct this 381 49846
error, an IF/THEN construction should be 40| 5.1786
used to set K=MAXDAT if the crack length 42 5.4375 < 1726

(XA) exceeds tabulated values.
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SUBROUTINE K801

Comm e e e e e e e e e e e e e =
-C
Cmmm e e e e e e e e e e e e e e e e e e e e e e e e e e e o e e e e e 2 2
-C
C PURPOSE : CALCULATES K FOR 801 ; Al-K1 TABLE PROVIDED BY THE USER
(o
C
C
XA=ANOW (1)
C
C INTERPOLATE TO GET K
C

30 DO 40 ISTR=2, MAXDAT
IF(XA.LT.CRDPTH(ISTR)) GOTO 50
40 CONTINUE
K=MAXDAT
50 K=ISTR
J=K-1
Y= (XA-CRDPTH (J) ) *XKOSIG (K) - (XA-CRDPTH (K) ) *XKOSIG (J)
Y=Y/ (CRDPTH (K) -CRDPTH (J))
SIGZ=EQPARS (ITRANS, IDEF, 1}
XK(IDEF, 1))=Y * SIG2Z
RETURN
END

Figure 4.1.8-1. Source Code for Subroutine K801 Showing Error in DO Loop Assignment
4.1.9 900 SERIES RESULTS

A single configuration, 901 (user defined influence function coefficients), is available in
NASCRAC™ under the 900 series. This solution allows a NASCRAC™ user to define his or her
own weight function solution. The twenty-five weight function coefficients required as input must
be generated offline.

Table 4.1.9-1 presents V/V results for Table 4.1.9-1. Representative Results from
this NASCRAC™ capability. These results Configuration 901
. o1 2 K FROM 901 K FROM 203
were calculated by executing the 901 capability T 05 > 003
using the 203 (single edge crack in a plate) 12 2235 2235
weight function coefficients. The results listed 14 2441 2.440
in Table 4.1.9-1 was computed for a 10" wide 1.6 2.644 2.644
plate with an initial crack length of 1.0". The 1.8 2.849 2.849
load was a linearly decreasing load of 6 = 1 psi 2 3.060 3.059
at the crack mouth and ¢ = 0 at the free edge of ij izgz 32(7);
the plate.  This load chqice forced 26 3746 3746
NASCRAC™ to use the 203 weight function 28 4002 4.001
solution during a comparative analysis. 3 4275 4274
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The analytical results shown in Table 4.1.9-1 show agreement between 203 and 901;

therefore, this NASCRAC™ capability can be considered verified and also validated to the extent
that the weight function coefficients input into NASCRAC™ are valid. The format of the
coefficients file was not identified in the NASCRAC™ user's manual; therefore, this manual
should be updated to include an example file.
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42 Kvysa CALCULATION: VARIABLE THICKNESS

NASCRACT™ includes variable thickness K vs a capabilities for seven different
configurations in the 200 series (201-207). All of the configurations are through cracks in plate
specimens (205 and 207 are considered transverse sections of cylinders.). The variable thickness
option allows thickness to be discretized along the plate width. Input is tabular, i.e., a thickness is
assigned at a given location along the plate width.

The variable thickness option was verified and validated using two-dimensional finite
element models in FRANC [1,2]. FRANC allows thickness variations described by first, second,
or third order polynomials.

Comparative results between NASCRAC™ and FRANC revealed an inconsistency in
NASCRAC™’s required stress input. For configurations 203, 205, 206, and 207, NASCRAC™
expects stresses on the crack plane to be input. This requirement is consistent with weight function
theory. However, for configurations 201, 202, and 204, NASCRAC™ expects crack plane
loads/unit plate width. The inconsistency is due to the weight functions coded in NASCRAC™,
For configurations 203, 205, 206, and 207, NASCRAC™ uses a generic weight function routine
(GENRIF). The function coefficients for this routine were generated offline for each crack
configuration and hardwired into NASCRAC™. For configurations 201, 202, and 204,
NASCRAC™ uses weight functions obtained from {3]. In the literature, these functions are
presented in terms of load/unit width. These weight functions are coded into NASCRAC™
exactly as they appear in the literature; thus, a load/unit width input is necessary.

The described inconsistency is illustrated with the source code listed in Figure 4.2-1. This
figure lists a skeleton of the typical NASCRAC™ subroutines used to compute K solutions. The
first routine, Kxxx, calls a Gaussian quadrature integration routine, Q/NTxx, using an external
function, FCTxxx, as a calling parameter. The x's represent the appropriate configuration number
(e.g., 201). The external function FCTxxx consists of the weight function for the Kxxx
configuration. The stress for the analysis is included in the formulation with the variable SIGMA.
SIGMA is obtained by calling the subroutine STRINT. NASCRAC™ does not adjust SIGMA for
thickness but simply obtains the value of SIGMA either from a table lookup or functional
evaluation. In Figure 4.2-1, near the end of FUNCTION FCTxxx, the function value is multiplied
by the thickness at x (7X) before returning to Kxxx. However, after the program returns to Kxxx,
the thickness at the crack tip a, THICKX(A) is divided out. Thus, the thickness operations have
zero net effect in terms of changing load to stress but do distribute the load or stress as a function
of thickness along the width of the plate. Since the input load or stress is not altered by a factor of
thickness, the resulting K value is dependent on whether load or stress is input; therrefore, for 201,
202, and 204, if stresses are input into NASCRACT™ instead of load/unit width, the calculated
NASCRAC™ results will be in error by a factor of thickness.
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SUBROUTINE Kxxx
c
EXTERNAL FCTxxx
c
c INTEGRATION USING THE INFLUENCE FUNCTION
c
CALL QINTxx(FCTxxx,Y)
c
IF(IVTHIC.EQ.1) THEN
XK(IDEF,1)=Y/THICKX(A)
ELSE
XK(IDEF 1))=Y
ENDIF
RETURN
END

Sl e e e o o o o e a0 e o o o o ol oo oo e e o o o o0 oo o a0 o o o o o o e o o

FUNCTION FCTxxx(XO0A)

CALL STRINT(X,Y Z,SIGMA)
FCTxxx=SIGMA*F* A
IF(IVTHIC.EQ.1) THEN
TX=THICKX(X)
ELSE
TX=1.
ENDIF
FCTxxx = FCTxxx*TX
RETURN
END

Figure 4.2-1. Variable Thickness Operations in Kxxx Subroutines

Table 4.2-1 lists comparative results which illustrate the inconsistency described above. In
this table three sets of results are listed: FRANC results with a variably thick model,
NASCRAC™ results using stress inputs, and NASCRACT™ results using load/unit width inputs.
Table 4.2-1 lists results for both configuration 202, which uses a weight function from [3], and
configuration 203, which uses a generic weight function generated for NASCRAC™, The results
clearly show the inconsistency in the expected inputs for NASCRACT™'s variably thick K
solutions. For configuration 202, NASCRAC™ agrees with FRANC when load/unit width values
are input to NASCRAC™; conversely, for configuration 203, NASCRAC™ agrees with FRANC
when stress values are input. For both configurations, when the variable thickness option is
employed but the thickness is uniform with a value of unity (Case 1: t = 1.0 in Table 4.2-1) the
NASCRAC™ results for stress and load/unit width inputs are identical and agree with FRANC
results. Case 2 results, which were also computed with the variable thickness option but with a
uniform thickness equal to 2.5, clearly demonstrate the inconsistency. In this case NASCRAC™
202 load/unit width results agree with FRANC whereas for 203, NASCRAC™ stress results
agree with FRANC. This inconsistency is also present in the algorithm of the uniform thickness
K solutions (described in Section 4.1) but is not evident in the results because the crack plane
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stresses and the crack plane loads/unit width are identical for a thickness of unity. This fact is
evident in the subroutines listed in Figure 4.2-1 where the thickness values TX and TH/CKX(A) are
set to unity (see the highlighted IF-THEN statement) for the constant thickness option.

To correct the inconsistency the required input units for each configuration should be
explicitly stated in the documentation and displayed by the user interface. A more rigid resolution
of the inconsistency is to recode NASCRAC™ to expect stress values on the crack plane in all
situations.

Table 4.2-1 Inconsistency in K vs @ Variable Thickness Solutions

CASE| = CONFIGURATION 202 a CONFIGURATION 203
NASCRACTM | NASCRACTM NASCRACTM | NascracTM
(STRESSES)| (LoaD; | FRANC (STRESSES) | (LoaDp; | FRANC

WIDTH) WIDTH)
05| o013 0.134 013 |10 0.206 0206 0.201
=10 15| o024 0.241 0240 |30 0.495 0.495 0.495
25| o034 0344 0342 |50 1117 1117 1110
05| o002l 0.053 0054 |10 0.083 0207 0.080
=25 15| 003 0.097 009 |30 0.199 0.498 0.198
251 0055 0.138 0138 |50 0.448 1120 0.443

To summarize the variable thickness K vs a verification effort, the NASCRAC™ capability
was verified for all variably thick configurations (201-207) if the correct stress input (as
discussed above) is applied. This verification is based on good agreement between
NASCRAC™ and FRANC for small cracks and uniform, non-unity thicknesses; linearly varying
thicknesses; and quadratically varying thicknesses and reasonable agreement for similar
thicknesses and larger cracks.

4.2.1 CONFIGURATION 201 (CRACK IN AN INFINITE PLATE)

Table 4.2.1-1 lists Table 42.1-1. Representative Variable Thickness K vsa
. . 0
comparative results for 201 variable Results for 201
. . NASCRACTM | NascracTM
thickness K vs a calculations. These CASE a | FRANC | “erppss | LOAD/UNIT
results were computed using a stress INPUT | WIDTH INPUT
field on the crack plane induced by a 1. UNIFORM | 05 | 0.024 0.010 0.024
: THICKNESS | 1.0 | 0.034 0.134 0.034
long the plate
L 1br Pomt load along the p (1=2.5) 15 | 0.042 0.016 0.041
centerline. The stresses along the 20 | o048 0.019 0.047
crack plane were determined using 25 | 0.054 0.021 0.052
FRANC and input into 2. LINEARLY | 05 | o0.014 0.003 0.014
VARYING 10 | 0.020 0.004 0.019
™ able.
NASCRAC™ as a stress 12 THICKNESS | 15 | 0.024 0.005 0.023
of input stresses for each case listed 25 | 0.030 0.006 0.028

in Table 4.2.1-1.
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Table 4.2.1-2 . Stress Inputs for 201 Variable Thickness
K vs a Calculations

The K values listed in Table 4.2.1-
1 for the two different stress inputs

. . . LOADS ON CRACK PLANE

validate the variable thickness K vs a POSITION CASE 1 CASE 2

solution for configuration 201 when the ” pm o 1 . pran
stress inputs in NASCRAC™ are 2000 | 00004 | 00010 | 00037 | 00129
load/unit width values on the crack 1592 0.0029 0.0073 0.0050 0.0133
plane, i.e., stress values on the crack plane -11.84 0.0077 0.0191 0.0072 -0.0135
multiplied by the corresponding plate -1.76 0.0129 0.0324 0.0097 -0.0102
thickness at that stress location. This -3.67 00175 0.0437 0.0113 0.0027
NASCRACT™ solution uses weight 0.00 00192 | 00480 | 0.0113 0.0057
function theory in which the weight 408 00175 [ 00437 | 00054 | 0014
function is defined in terms of load/unit 8.16 00129 | 00324 | 00064 | 00137
width [3]. This type input is inconsistent 12.24 00077 00191 0.0033 0.0097
with other NASCRACT™ variable 1633 | 0009 ] 00073 | 00005 | 00018
thickness solutions and traditional weight 2000 00004 | 00010 | 00018 | -0.0081

function theory, where the formulation is
in terms of stresses on the crack plane. This inconsistency needs to be clearly identified in the
documentation. A more consistent approach is to recode the solution to accept stress input.

4.2.2 CONFIGURATION 202 (CENTER CRACKED PANEL)

Table 4.2.2-1 lists Table 4.2.2-1. Representative Variable Thickness K vs a Results for 202

. . NASCRACTM | NAscrRACTM

co.mparauvc results for 202 vax:xablc CASE a | FRANC | “oroess | LOAD/UNIT

thickness K vs a calculations. INPUT WIDTH

These results were computed using _ INPUT
a stress field on the crack plane 1. UNIFORM 051 0134 0.134 0.134
. . THICKNESS 10| 0191 0.192 0.192
induced by a 1 lbs point load along (t=1.0) 151 0240 0.241 0.241
: 20| 0287 0.290 0.290
the panel centerline. The stresses 25| o342 0344 0344
along the crack plane were 4. UNIFORM 05| 0054 0.021 0.053
determined using FRANC and TH(IIS'UZ‘JSE)SS 1(5’ 8%5 g-g;?l
input into NASCRAC™ a5 a stress ) 20 0.047 0.116
table. Table 4.2.2-2 shows the two 25 0.055 0.138
. . 3. LINEARLY VARYING| 05| 0.09 0.062 0.096
variants of input stresses for each THICKNESS 10| 0136 0.081 0.130
case listed in Table 4.2.2-1. The (1=05+0.2x) 15| 0164 0.092 0.154
] 20| o0.189 0.101 0.173
results in Table 4.2.2-1 were 251 0218 0.109 0.192
computed using a panel width of [ 4. LINEARLY VARYING| 05| 0.109 0.076 0.109
10" THICKNESS 10| o0.164 0.122 0.167
: (t=25-02x) 15] 0220 0.173 0.226
20| 0283 0.235 0.293
. . 25| 0366 0316 0.376
As with configuration 201, —~—rarrrEEaTTy To5 | 0.1%9 0.127 0.135
the K values listed in Table 4.2.2-1 | VARYING THICKNEsz 10| 0186 0.159 0.179
. . (t=10+02x+002x%) | 15| 0221 0.172 0.205
for. the two dlfferent stress inputs 2ol 078 0.175 0.225
validate the variable thickness K vs 251 02m 0.184 0.241

a solution for configuration 202
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when the stress inputs in NASCRAC™ are load/unit width values on the crack plane, i.c.,
stress values on the crack plane multiplied by the corresponding plate thickness at that stress
location. This NASCRAC™ solution uses weight function theory in which the weight function
was adapted from [3] and is defined in terms of load/unit width. This type input is inconsistent
with other NASCRAC™ variable thickness solutions and traditional weight function theory, where
the formulation is in terms of stresses on the crack plane. This inconsistency needs to be clearly
identified in the documentation. A more consistent approach is to recode the solution to accept
stress input.

Table 4.22-2 Load Inputs for 202 Variable Thickness X vs a Calculations
LOADS ON CRACK PLANE

CASE 1 CASE2 CASE 3 CASE 4 CASE 5
X c o't c c* 1 o c* 1 G o' 1 o o't

0 0.097 0.097 0.039 0.097 0.127 0.064 0.025 0.062 0.182 0.091
1.02 0.095 | 0.095 0.038 0.095 0.115 0.081 0.035 0.079 0.168 0.088
204 0.097 | 0.097 0.039 0.097 0.106 0.097 0.046 0.097 0.154 0.090
3.06 0.101 0.101 0.041 0.101 0.099 0.110 0.059 0.111 0.143 0.098
408 0.105 0.105 0.042 0.105 0.091 0.119 0.0M 0.120 0.131 0.109

5 0.106 | 0.106 0.043 0.106 0.082 0.123 0.081 0.122 0.117 0.117
6.02 0.105 0.105 0.042 0.105 0.071 0.121 0.091 0.118 0.100 0.122
7.04 0.101 0.101 0.041 0.101 0.059 0.113 0.099 0.108 0.079 0.118
8.06 0.097 | 0.097 0.039 0.097 0.046 0.098 0.106 0.094 0.059 0.106
9.08 0.095 0.095 0.038 0.095 0.035 0.080 0.115 0.079 0.039 0.084

10 0.097 | 0.097 0.039 0.097 0.026 0.064 0.126 0.063 0.024 0.060

Load = 1 Ibf along centerline for all cases.

4.2.3 CONFIGURATION 203 (SINGLE EDGE CRACK IN A PLATE)

Table 4.2.3-1 lists comparative results for 203 variable thickness K vs a calculations.
These results were computed using a stress field on the crack plane induced by a 1 1b¢ point load
along the plate centerline. The stresses along the crack plane were determined using FRANC and
input into NASCRACT™ as a stress table. Table 4.2.3-2 shows the two variants of input stresses
for each case listed in Table 4.2.3-1. The results in Table 4.2.3-1 were computed using a panel
width of 10".

NASCRAC™'s K vs a capability for a single edge crack in a variably thick plate compares
well with FRANC results when the input load case for NASCRAC™ consists of stress values
on the crack plane. This capability in NASCRAC™ was coded by using a generic influence
function approach in which the influence function coefficients were determined numerically from
an offline analysis and hardwired into NASCRAC™, This approach required that the input load
values be crack plane stresses, not load per unit width. This input is consistent with weight
function theory formulations. Table 4.2.3-1 does show less agreement between NASCRAC™
and FRANC for larger cracks; therefore, results for a/W > 0.4 should be used cautiously.
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Table 4.2.3-1. Representative Variable Thickness K vs a Results for 203

NASCRAC | NASCRAC
CASE 2 FRANC STRESS LOAD/UNIT
INPUT WIDTH
INPUT

1. UNIFORM 1.0 2009 2061 2061
THICKNESS 2.0 3276 3319 3319
(t=10) 3.0 4946 4951 4951

40 7340 7391 7391

5.0 1.110 1.117 1.117

2. LINEARLY VARYING 1.0 2097 2266 1411
THICKNESS 2.0 2865 3167 2353
(t=0.5+02x) 3.0 3709 4137 3539

40 4838 5438 5156

5.0 6519 7298 7482

3. LINEARLY VARYING 1.0 0688 0677 1598
THICKNESS 20 1452 1346 3015
(t=25-02x) 30 2708 239 5104

40 4838 4165 8481
50 8629 7294 1.4305

4. QUADRATICALLY 10 3412 3682 1890
VARYING THICKNESS 20 4638 5313 2857
(t=05+0.02x2) 3.0 S710 6836 3920

40 7107 8628 5359

5.0 8971 1.090 333

Table 4.23-2. Stress Inputs for 203 Variable Thickness K vs a Calculations

LOADS ON CRACK PLANE

POSITION CASE | CASE 2 CASE 3 CASE 4
X c c't o c't o o't c o't
0 0.097 0.097 0.127 0.064 0.025 0.062 0.182 0.091
1.02 0.095 | 0.095 0.115 0.081 0.035 0.079 0.168 0.088
24 0.097 0.097 0.106 0.097 0.046 0.097 0.154 0.090
3.06 0.101 0.101 0.099 0.110 0.059 0.111 0.143 0.098
408 0.105 0.105 0.091 0.119 0.0M 0.120 0.131 0.109
5 0.106 0.106 0.082 0.123 0.081 0.122 0.117 0.117
6.02 0.105 0.105 0.071 0.121 0.091 0.118 0.100 0.122
7.04 0.101 0.101 0.059 0.113 0.099 0.108 0.079 0.118
8.06 0.097 0.097 0.046 0.098 0.106 0.094 0.059 0.106
9.08 0.095 0.095 0.035 0.080 0.115 0.079 0.039 0.084
10 0.097 0.097 0.026 0.064 0.126 0.063 0.024 0.060

Load = 1 1bf along centerline for all cases.

4.2.4 CONFIGURATION 204 (DOUBLE EDGE CRACKS IN A PLATE)

Table 4.2.4-1 lists comparative results for 204 variable thickness K vs a calculations.
These results were computed using a stress field on the crack plane induced by a 1 1b; point load
along the panel centerline. The stresses along the crack plane were determined using FRANC and
input into NASCRAC™ as a stress table. Table 4.2.4-2 shows the two variants of input stresses
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for each case listed in Table 4.2.4-1. The results in Table 4.2.4-1 were computed using a panel
width of 10".

Table 4.2.4-1. Representative Variable Thickness K vs a Results for 204 .
NASCRACTM | NascracTM
CASE s FRANC STRESS | LOAD/UNIT
INPUT WIDTH
INPUT

1. UNIFORM 05 0.135 0.137 0.137
THICKNESS 10 0.187 0.194 0.194
t=1.0) 15 0.230 0.240 0.240
20 0.271 0.283 0.283
25 0.317 0.327 0.327
2. UNIFORM 05 0.054 0.022 0.055
THICKNESS 10 0.075 0.031 0.078
(t=2.5) 15 0.092 0.038 0.096
20 0.108 0.045 0.113
25 0.127 0.053 0.131
3. LINEARLY 05 0.157 0.293 0.164
VARYING 10 0.203 0.346 0.214
THICKNESS 15 0.234 0.365 0.247
(t=0.5+0.2x) 20 0.259 0373 0.273
25 0.286 0.378 0.298
4. LINEARLY 0Ss 0.039 0.016 0.040
VARYING 10 0.062 0.027 0.063
THICKNESS 15 0.087 0.038 0.088
(t=25-02x) 20 0.110 0.052 0.115
25 0.142 0.069 0.148
5. QUADRATICALLY 05 0.251 0.496 0.251
VARYING 10 0332 0.676 0.347
THICKNESS 15 0.388 0.772 0.405
(t=05-0.02x2) 20 0.431 0.840 0.453
25 0474 0.871 0.485

Table 4.2.4-2. Stress Inputs for 204 Variable Thickness K vs a Calculations
LOADS ON CRACK PLANE

CASE 1 CASE 2 CASE3 CASE 4 CASE 5

X c g"thk [ c'thk o c*thk [ c'thk c c'thk

0 0.097 0.097 0.039 0.097 0.127 0.064 0.025 0.062 0.182 0.091
1.02 0.095 0.095 0.038 0.095 0.115 0.081 0.035 0.079 0.168 0.088
2.04 0.097 0.097 0.039 0.097 0.106 0.097 0.046 0.097 0.154 0.090
3.06 0.101 0.101 0.041 0.101 0.099 0.110 0.059 0.111 0.143 0.098
408 0.105 0.105 0.042 0.105 0.091 0.119 0.071 0.120 0.131 0.109

5 0.106 0.106 0.043 0.106 0.082 0.123 0.081 0.122 0.117 0.117
6.02 0.105 0.105 0.042 0.105 0.071 0.121 0.091 0.118 0.100 0.122
7.04 0.101 0.101 0.041 0.101 0.059 0.113 0.099 0.108 0.079 0.118
8.06 0.097 0.097 0.039 0.097 0.046 0.098 0.106 0.094 0.059 0.106
9.08 0.095 0.095 0.038 0.095 0.035 0.080 0.115 0.079 0.039 0.084

10 0.097 0.097 0.039 0.097 0.026 0.064 0.126 0.063 0.024 0.060

Load = 1 lbf along centerline for all cases.
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As with configurations 201 and 202, the K values listed in Table 4.2.4-1 for the two
different stress inputs validate the variable thickness K vs a solution for configuration 204 when
the stress inputs in NASCRAC™ are load/unit width values on the crack plane, i.e., stress
values on the crack plane multiplied by the corresponding plate thickness at that stress location.
This NASCRAC™ solution uses weight function theory in which the weight function was adapted
from [3] and is defined in terms of load/unit width. This type input is inconsistent with other
NASCRAC™ variable thickness solutions and traditional weight function theory, where the
formulation is in terms of stresses on the crack plane. This inconsistency needs to be clearly
identified in the documentation. A more consistent approach is to recode the NASCRAC™
solution to accept stress input.

4.2.5 CONFIGURATION 205 (AXIAL (ID) CRACK IN A HOLLOW CYLINDER)

Comparative results for the 205 variable thickness K vs a solution are shown in Table
4.2.5-1. These results were computed using a uniform internal radial pressure of 1 psi. The crack
plane stress were calculated from thick walled cylinder solutions for pressurized cylinders. These
stresses were adjusted for thickness variation and checked versus FRANC calculations. Table
4.2.5-2 lists these crack plane stresses for the cases in Table 4.2.5-1.

Table 4.2.5-1. Representative Variable Thickness Table 4.2.5-2. Crack Plane Stresses for 205 Variable
K vs a Results for 205 Thickness K vs a Calculations
CASE a | FRANC | NASCRACTM CRACK PLANE STRESSES FOR UNIFORM
1. UNIFORM 05 211 2.14 INTERNAL RADIAL PRESSURE
THICKNESS 1.0 288 2.89 POSITION x | 6: CASE 1 | 6: CASE2 | o: CASE3
(t=1.0) 1.5 351 345 0 0.003 0.001 0.020
;g :'-112 :';"1’ 10 0.032 0013 0.044
2 UNIFORM | 05| 084 085 20 0.073 0.030 0.074
THICKNESS [ 10| 115 115 39 0.127 0.031 0.106
(t=25) 15 1.40 142 40 0.173 0.069 0.130
20 1.64 1.67 5.0 0.198 0.079 0.137
25] 1% 193 Note: Position x is measured with x = 0 at the
3. LINEARLY 05| 062 0.60 internal surface of the cylinder.
VARYING 1.0 0.83 0.78
THICKNESS 15| 101 094 Results from NASCRAC™'s K vs a
@=35+020) g"g :; 112)? capability for an inner diameter axial crack in a
s0| 151 133 variably thick hollow cyl.mdcr (20?) agreed with
40| 193 1.70 FRANC results for uniforrm thicknesses not
inner diameter (D) = 10", outer diameter (D) = 20", equal to unity and compared reasonably well with

wall thickness = 5"
Load = 1 psi uniform internal radial pressure

FRANC for linearly varying thicknesses. This
capability in NASCRAC™ was coded by using a
generic influence function approach such that influence function coefficients were determined
numerically from an offline analysis and hardwired into NASCRAC™. This approach was
formulated based on crack plane stress inputs. Only one r/W ratio (/W = 1) was analyzed since
the methodology was identical in all cases and previous uniformly thick analyses of all r/W ratios
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showed all the /W configurations to be valid. Based on the general agreement between
NASCRAC™ and FRANGC, this solution is valid for cracks whose length does not exceed 0.5
t, where t is the cylinder wall thickness. For longer cracks, the results in the table above suggest
that some divergence occurs. However, the NASCRAC™ solution still appears to be within
reasonable engineering bounds (12%).

The physical implication of this solution is not clear. The thickness variation occurs in the
plane of the crack. This implies that the cylinder length (which is equivalent to thickness in this
solution) varies across the wall thickness.

4.2.6 CONFIGURATION 206 (EDGE CRACK IN A DISK)

Variable Table 4.2.6-1 Representative Variable Thickness K vs a Results for 206 with a

i Centerline Load
thickness K vs a enterline Loa

™ ™
comparative results for CASE a | FRANC S:QS;RH";]C,UTS T.gicx)%rirr
configuration 206 are WIDTH INPUTS
presented in Tables 4.2.6-1 1. UNIFORM 10| 0039 0.046 0.046
and 4.2.6-2. The results in THICKNESS 20] 0.143 0.151 0.151
t=1.0 30| 0338 0.337 0.337
Table 4.2.6-1 were =i 40| 0643 0.651 0.651
computed using stresses on so|l 113 1.14 1.14
the crack plane induced by a 2 UNIFORM 10| 0016 0.018 0.046
single point load of 1 lbg THICKNESS 20| 0.057 0.060 0.151
along the centerline of the =23 3:8 323 8;2(5) g:zg
disk. The results in Table 50| 0452 0.456 1.14
4.2.6-2 were computed |3. LINEARLY VARYING| 1.0 | 0.064 0.071 0.047
using stresses on the crack T“LCSKNS’? g-g 8-;’;; g-;:: g-z;
. t=00+0. R . N .
plane induced by a ( ) 40| 0434 0471 0.505
distributed load whose sol 0674 0.732 0.865
resultant was 1 lbg. The |4 LINEARLY VARYING| 10| -6E4 0.002 0.003
distributed load was applicd THICKNESS 20| 0.055 0.056 0.117
at the quarterlines and the (t=25-02x) 30| 0181 0.169 0.336
40| 0419 0384 0.720
centerline of the disk. The 5ol 0863 0.767 1.37
stresses on the crack plane | 5. QUADRATICALLY | 10| o0.104 0.116 0.060
were calculated using VARYING THICKzNESS 20| 0235 0.262 0.144
FRANC and then input into (1=05-0.02x%) 30| 0419 0.463 0.280
NASCRACT™ as a one- g'g g“;;‘; (),";386 3'3‘2’3

dimensional stress table. “giameter (D) = 10

Tables 4.2.6-3 and 4.2.6-4

list the crack plane stresses corresponding to the two load distribution cases. In all the analyses,
the diameter of the disk was 10”.
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Table 4.2.6-2. Representative Variable Thickness K vs a Results for 206 with a Distributed Load

NASCRACTM NASCRACTM
CASE a FRANC | <rRESSINPUTS | LOAD/UNIT
WIDTH INPUTS
1 1.0 0.155 0.162 0.162
2 1.0 0.062 0.065 0.162
3 1.0 0.184 0.196 0.125
4 1.0 0.060 0.058 0.137
5 1.0 0.286 0.337 0.170

diameter (D) = 10"

Table 42.6-3. Stresses Induced by Centerline Load for 206 Varlable Thickness K vs a Calculations

POSITION CASE 1 CASE2 CASE3 CASE4 CASE S
X o c*thk o c“thk o g'thk o c"thk o c*thk
0 0.003 0.003 0.001 0.003 0.020 0.010 -0.010 -0.026 0.029 0.014
102 0.032 0.032 0.013 0.032 0.044 0.031 0.010 0.023 0.065 0.034
204 0.075 0.075 0.030 0.075 0.074 0.067 0.039 0.081 0.112 0.065
3.06 0.127 0.127 0.051 0.127 0.106 0.118 0.075 0.141 0.162 0.111
408 0.173 0.173 0.069 0.174 0.130 0.171 0.111 0.187 0.196 0.163
5 0.198 0.198 0.079 0.198 0.137 0.205 0.135 0.202 0.203 0.203
6.02 0.173 0.1713 0.069 0.174 0.111 0.189 0.130 0.168 0.160 0.196
7.04 0.127 0.127 0.051 0.127 0.075 0.143 0.106 0.116 0.104 0.155
8.06 0.075 0.075 0.030 0.075 0.039 0.081 0.074 0.066 0.050 0.091
9.08 0.032 0.032 0.013 0.032 0.010 0.023 0.044 0.030 0.009 0.020
10 0.003 0.003 0.001 0.003 -0.009 -0.021 0.022 0.011 0.017 -0.042

Load = 1 Ibf along centerline of disk perpendicular to crack plane.

Table 4.2.6-4. Stresses Induced by Distributed Load for 206 Variable Thickness X vs a Calculations

POSITION CASE 1 CASE 2 CASE 3 CASE 4 CASE S
X o c"thk o c'thk o c'thk o ¢'thk c c'thk
0 0.049 0.049 0.019 0.049 0.074 0.037 0.012 0.029 0.132 0.066
1.02 0.082 0.082 0.033 0.082 0.106 0.075 0.033 0.076 0.152 0.079
204 0.105 0.105 0.042 0.105 0.115 0.104 0.050 0.105 0.172 0.100
3.06 0.112 0.112 0.045 0.112 0.14 0.116 0.061 0.115 0.158 0.109
408 0.116 0.116 0.046 0.116 0.093 0.122 0.072 0.122 0.140 0.116
5 0.119 0.119 0.048 0.119 0.084 0.126 0.083 0.125 0.125 0.125
6.02 0.116 0.116 0.046 0.116 0.072 0.123 0.093 0.120 0.103 0.126
7.04 0.112 0.112 0.045 0.112 0.061 0.117 0.104 0.114 0.082 0.122
8.06 0.105 0.105 0.042 0.105 0.050 0.106 0.115 0.102 0.062 0.111
9.08 0.082 0.082 0.033 0.082 0.033 0.077 0.106 0.073 0.037 0.079
10 0.049 0.049 0.019 0.049 0.014 0.035 0.078 0.039 0.011 0.027

Load = 0.5 Ibs along centerline of disk, 0.25 Ibf along quarterlines

NASCRAC™'s K vs a capability for a single edge crack in a variably thick solid disk (206)
compares reasonably well with FRANC results (within 15%) when the input load case for
NASCRACT™ consists of stress values on the crack plane. This capability in NASCRAC was
coded with a generic influence function in which the influence function coefficients were
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determined numerically from an offline analysis and hardwired into NASCRAC™. This input is
consistent with weight function theory formulations. The load application (centerline load versus
distributed load) did not significantly affect the relative differences between NASCRAC™ and
FRANC results. The agreement between NASCRAC™ and FRANC does validate this solution.

4.2.7 CONFIGURATION 207 (AXIAL (OD) CRACK IN A HOLLOW CYLINDER)

Comparative results for the 207 variable thickness K vs a solution are shown in Table
4.2.7-1. These results were computed using a uniform internal radial pressure of 1 psi. The crack
plane stress were calculated from thick walled cylinder solutions for pressurized cylinders. These
stresses were adjusted for thickness variation and checked versus FRANC calculations. Table
4.2.7-2 lists these crack plane stresses for the cases in Table 4.2.7-1.

Table 4.2.7-1. Representative Variable Thickness K vsa Results from NASCRACT™M's K vs a

Results for 207 - . . .

for an r di r
CASE —TFRANC T NASCRACTH cap.at::llxtyh.oka:1 1<1>ute d1 metc 2zl)xxal crack ina
TUNFORM 105 T 101 03 variably thick hollow .cy mder.( 7) agreed with
THICKNESS | 101 159 1.62 FRANC results for uniform thicknesses not equal
t=10) 15] 224 226 to unity and compared reasonably well with
§§ g'z? ;'g FRANC for linearly varying thicknesses.. This
. : e ” .
S Orrorv Tos T o0 oo capab{hty‘ in NASCRACT ' was coded by using a
THICKNESS | 101 o064 0.65 generic influence function approach where
(t=25) 15| 090 091 influence function coefficients were determined
20) 120 121 numerically from an offline analysis and hardwired
251 136 138 into NASCRAC™, This approach was formulated
3. LINEARLY | 05 1.14 1.20 .

VvARYING |10l 162 175 based on crack plane stress inputs. Based on the
THICKNESS | 15| 206 227 general agreement between NASCRAC™ and
(t=05+02x) | 20| 253 28 FRANG, this capability is valid for cracks whose

5] 307 346 length does not exceed 0.5 t, where t is the cylinder

inner diameter (D) = 10",

outer diameter (D) = 20" wall thickness. Based on the general agreement

between NASCRAC™ and FRANC, this

Table 4.2.7-2. Crack Plane Stresses for 207 Variable capabillty is Va.hd for cracks w]th a/t < 0.5 (t lS [he

Thickness K vs a Caleulations cylinder wall thickness.). For cracks where a/t 2

C%&ﬁ:ﬁ :]EZSFS%];STF(:M 0.5, the results for case 3 in Table 4.2.7-1 above
POSITION | o: CASE 1 | o- CASE 2 | o- Case 3| hint of some divergence between NASCRAC™
0 0.68 027 0.86 and FRANC and hence such results should be
1.02 0.75 0.30 0.89 used with less confidence.
204 0.86 0.34 092
3.06 1.02 041 0.98 The physical implication of this solution is
4.08 1.28 051 1.08 not clear. The thickness variation occurs in the
4.90 1.59 0.64 121 plane of the crack. This implies that the cylinder

length (which is equivalent to thickness in this
solution) varies across the wall thickness.
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43 Ivsa CALCULATION

NASCRAC™ contains J vs a solutions for eight configurations. These solutions were
adapted from [1] and [2]. The solutions assume that J can be calculated as the sum of an elastic J
(Je) and a plastic J (J.). The verification and validation approach to these solutions was a four step
approach: 1) verification of coded Jp equation, 2) verification of coded limit load (Pg) equation,
3) line-by-line comparison of NASCRAC™'s h; tables with [1] and [2], and 4) comparison of
NASCRAC™ results with spreadsheet results obtained using the formulas in [1] and [2]. In step
4), ], was calculated using J. = K2/E where K was obtained from the NASCRAC™ K solution
and an effective crack length. In general, the J vs a capabilities in NASCRAC™ were found to be
valid; however, several exceptions were discovered. Configuration 303, a circumferential through
crack in a cylinder, was the most notable exception because it contained a runtime error. The
remaining invalidities were due to the h; table and the method of calculating J., the elastic J
integral. h; is a dimensionless function included in the Jp (plastic J) formulation. It is dependent
on a/b, the crack length to specimen width ratio, and n, a hardening exponent for the Ramberg-
Osgood constitutive relationship. These relationships are expressed in the following equations:

p
Jp=acyec %hl(P—o)’h‘l (eq. 4.3-1)
hy = ( %,n) (eq. 4.3-2)
= —a (T (eq. 43-3)
—=a(— €q. 4.0-
(1] Co a

The most significant h; differences between NASCRAC™ and the references occurred in
the plane strain case of configuration 203. Several less significant h; errors were also discovered
for configurations 101, 202, and 204. These h; tables should be updated prior to releasing future
NASCRAC™ versions.

For J., the discrepancies between the NASCRAC™ computed value (computed using the
elastic version of the coded J, formulation and an effective crack length) and a J. computed from

K, E, and an effective crack length were observed to be more severe as the analysis transitioned
into the elastic-plastic and plastic regime. Although some of these discrepancies were significant
(differences of 50-60%), the contribution of J towards the total J for these cases was insignificant.

4.3.1 CONFIGURATION 101 (COMPACT TENSION SPECIMEN)
Comparative J vs a results for configuration 101 are shown in Table 4.3.1-1. Plane stress

and plane strain were considered as indicated. The results in Table 4.3.1-1 were calculated with
three different point loads: 1, 50, and 250 kips. This range of loads provided elastic (cases 1-4,
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10-13), elastic-plastic (cases 5-7, 14-16), and fully plastic (cases 8-9, 17-18) results. Material
properties for the calculations are listed in Table 4.3.1-2.

Table 4.3.1-1. Representative Results for 101 J vs a Computations

Case | a w B P I, I, 3 Ip JToTAL JIToTaL
NASCRACTM | Reference | NASCRACTM | Reference | NASCRACTM | Reference
PLANE STRESS

1 25 | 10 | 25 1 39010-5) | 38110°5) | 3.6(10%) | 3601025 | 39010 | 3.8010°)

2 75| 10 ] 25 1 1.401073) | 130103 | 4.6(101%) | 4.6(1019) 14(103%) | 130107

3 251 10 | 50 1 9.8(106) | 940106 | 1.700:%2) | 1.7003) | 98104 | 9.4(10°9)

4 725 | 10 | 50 1 34010 | 32010% | 22007 | 2200-17) | 340104 | 3.2(10%)

5 25 | 10 | 25 | s0 0.102 0.0987 1.73(10%) | 1.73(106) 0.102 0.0987

6 50 10| 25| 50 0.436 0.424 0.0214 0.0214 0457 0.446

7 {6251 10| 25| 50 1.36% 0.641 23.7* 212 23.7* 21.8

8 25 | 10 | 25 | 250 44 24 84.7 84.7 89.1 87.0

9 1375] 10| 25 | 250 17.8* 16.8 5175% 5250 5193+ 5267

PLANE STRAIN

10125 10]25] 1 3.(10% | 34q0%) | 2100%) | 2100%) | 3;105) [ 34009

1m 175 10] 25 1 1.110°%) | 11103 | 22010°°) | 22010-15) 1.1107% | 11003

12 25 10 | 50 1 7.7(10%) | 8.4(10% 1.0(10%) | 1.010%) 7.7(10-%) 8.4(10°6)

13 ] 75 10 | 5.0 1 2.7(10% 2.9(10% L1(10718) | 110018, 27(10% | 29310

14 [ 25| 10 ] 25| 50 0.078 0.085 1.03(107) | 1.03(107) 0.078 0.085

15 ] 50| 10| 25| 50 0.309 0.322 7.79(10%) | 7.79(10% 0.310 0.323

16 J62s| 10 | 25 | s0 0.819* 0.904 0.908* 0.886 1.757+ 1.791

17 | 25 | 10 | 25 | 25 23 21 50 50 74 7.1

18 | 50| 10 ] 25 | 25 189 22 38020 38020 38030 38040

* Interpolated value

Table 43.1-2. Material Properties for J vs a Computations

MATERIAL PROPERTY | SYMBOL VALUE
YOUNG'S MODULUS E 10000 ksi
YIELD STRESS o, 37ksi
FLOW STRESS D 50 ksi
POISSON'S RATIO v 033

NASCRAC™s J vs a solution for configuration 101, compact tension specimen, agrees
with [1] for the ranges specified in the documentation (0.25 € a/W < 1.0, 1 < n < 20); therefore,
this solution is valid to the extent that reference [1] is valid. The original work from [1] used a
table look-up based on a/W and n whereas NASCRAC™ uses a look-up based on a/W and 1/n;
however, the J, from NASCRAC™ and [1] are identical or nearly identical in all comparison cases
(Some comparisons, i.e., 7, 9, 16, used interpolated NASCRAC™ output which led to
insignificant differences between NASCRAC™ and [1].). Additionally, two discrepancies
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occurred in the NASCRAC™ h; table for plane strain, namely, at a/W = 0.375 for n =16 and 20.
Minor differences in J. exist between NASCRAC™ and the reference values in Table 4.3.1-1 due
to different computational techniques. NASCRAC™ uses the linear version of the J, expression
whereas the reference value was determined using Je = Kj2/E. The J. comparison is reasonable in
the elastic regime and diverges as the analysis transitions into elastic-plastic and plastic conditions;
therefore, the divergence is not significant until J, dominates the total J solution. A comparison of
the NASCRAC™ coded Py equation with [1] showed identical agreement. A final comparison
between NASCRAC™ and [1] proved that the coded J, equation reduces to the J; equation.
Future NASCRAC™ releases should include an updated h; table for this solution which corrects
the discrepancies described above.

4.3.2 CONFIGURATION 104 (STANDARD THREE-POINT BEND SPECIMEN)

Comparative J vs a results for configuration 104 are shown in Table 4.3.2-1. Plane stress
and plane strain were considered as indicated. The results in Table 4.3.2-1 were calculated with
three different point loads: 1, 30, and 60 kips. This range of loads provided elastic (cases 1-3, 10-
12), elastic-plastic (cases 4-6, 13-15), and fully plastic (cases 7-8, 16-18) results. Material
properties for the calculations are listed in Table 4.3.1-2.

NASCRAC™'s J vs a solution for configuration 104, standard three-point bend specimen,
agrees with [1] for the ranges specified in the documentation (0.125 < a/W < 0.875, 1 < n < 20);
hence, this solution is valid to the extent that [1] is valid. The original work from [1] used a table
look-up based on a/W and n whereas NASCRACT™ uses a look-up based on a/W and 1/n;
however, the J, from NASCRAC™ and [1] are identical or nearly identical in all cases. Minor
differences in J. exist between NASCRAC™ and the reference values in Table 4.3.1-1 due to
different computational techniques. NASCRAC™ uses the linear version of the J, expression
whereas the reference value was determined using J. = Ki2/E. The J. comparison is reasonable in
the elastic regime and diverges as the analysis transitions into elastic-plastic and plastic conditions;
therefore, the divergence is not significant until J, dominates the total J solution. A comparison of
the NASCRAC™ h; tables, coded J, equation, and coded Pg equation to the quantities in [1]
showed identical agreement.
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Table 4.3.2-1 Representative Results for 104 J vs ¢ Computations

Case a w B P Je Je JP Jp JTUTAL JTOTAL
NASCRACTM | Reference | NascracTM | Reference NASCRACTM | Reference
PLANE STRESS
1 4 1 1 7.2(10% 72(10%) | 20010715 | 2:0010°73) 7.200%) | 720104
1 1 290103 | 283103 | 8101072 | g.1010°12) 29(103) | 2.8010°%)
1 1 2.5(10°%) | 270103 1.9(10°% 1.9(10°5) 25(10%) | 270102
4 05 4 1 30 0.40 040 1.7 17 2.06 2.06
5 1 4 1 30 0.96 098 349 349 359 359
6 15 4 1 30 29 3.1 2030 2010 2033 2010
7 05 4 1 60 2.96 299 3388 3392 3391 3395
8 1 4 1 60 149 16.1 7.1510%) | 7.15010%) | 7.16(10%) | 7.16(10%)
PLANE STRAIN

10 1 4 1 1 5.7004) | 64(10% | 14(101€) | 140107 | 5700%) 6.4(10%

11 2 4 1 1 2210 | 25103 | 4.6(101%) | 461013 220103 | 2.5(10°3)

12 3 4 1 1 17102 | 22003 1.(10°%) 1.(10% 2.0(107% 2.2(10°%

13 | 05 4 1 30 027 031 0.082 0.084 035 040
14 1 4 1 30 0.58 0.67 2.6 256 3.14 323
15 15 4 1 30 1.24 150 126.3 125 127.5 126.7
16 | 05 4 1 60 1.29 1.54 169 172 170 174
17 1 4 1 60 3.25 395 5242 5242 5245 5246
18 15 4 1 60 11.1 158 2.59(10%) 2.56(10%) 259(10%) | 2.56(10°)

4.3.3 CONFIGURATION 202 (CENTER CRACKED PANEL)

Comparative J vs a results for configuration 202 are shown in Table 4.3.3-1. Plane stress
and plane strain were considered as indicated. The results in Table 4.3.3-1 were calculated with
two different point loads: 1 and 25 ksi. This range of loads provided elastic (cases 1-3, 7-9),
elastic-plastic (cases 4, 10), and fully plastic (cases 5-6, 11-12) results. Material properties for the
calculations are listed in Table 4.3.1-2.

NASCRAC™'s J vs a solution for configuration 202, center cracked panel, is valid for the
ranges specified in the documentation (0.0 <a/W <0.875,1<sn< 20); hence, this solution is valid
top the extent [1] is valid. The original work from [1] used a table look-up based on a/W and n
whereas NASCRAC™ uses a look-up based on a/W and 1/n; however, the J, from NASCRAC™
and [1] are in general agreement for all cases. Small differences (< 3% for plane stress, < 16% for
plane strain) do exist between the NASCRACT™ h, table and the h; table in [1] for a/W = 0.125
and n = 10, 13, 16, and 20 but probably are not significant to the final result. Differences in Je also
exist between NASCRACT™ and the reference values in Table 4.3-3-1 due to different
computational methods. NASCRAC™ uses the linear version of the J, expression whereas the
reference value was determined using J. = Ki2/E. The J. comparison, however, is reasonable in
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the elastic regime and diverges as the analysis transitions into elastic-plastic and plastic conditions;
therefore, the divergence is not significant until J, dominates the total J solution. A comparison of
the coded Py equation with [1] showed identical agreement. Also a reduction of the coded J,
equation compared identically to the J, equation in [1].

Table 433-1. Representative Results for 202 J vs @ Computations

Case o Je Je I Ip JroTAL JroTAL
NASCRACTM | Reference | NASCRACTM | Reference | NASCRACTM | Reference
PLANE STRESS
1 1 6.8(10%) | 6.8(10%) | 1.0(105) { 10010715 | 6.8(10% | 6.8(10%)
2 1 1.8(10°%) | 18003) | 60(10%) | 6.0(10%) 1.8(10°3) 1.8(10°3)
3 1 5.0010°%) 5.1(10-3 | 560101 | 5601011 5.0(103) 5.1(10°3)
4 25 0478 0.482 2.48 248 2.96 2.96
5 25 141 143 143 143 144 144
6 25 149 113 1.33(10°) 1.33(10%) 1.33(10%) | 1.3310%)
PLANE STRAIN
1 53104 6.0(104%) | 22(10°16) | 2.2(10°16) 5.3(10% 6.0(10%
1 1.4(10°3) 1.6(10%) | 130014 | 1331014 1.4(10-3) 1.6(10°3
9 1 390103 | 450103 | 8501012y | 8.51012) | 3.9(10°3 4.5(10°3)
10 25 0348 0.396 0.520 0.520 0.869 0917
11 25 0.935 1.08 31.2 312 322 323
12 25 337 4.12 2.03(10%) 2.03(10%) 2.03(10%) 2.03(10%)

43.4 CONFIGURATION 203 (SINGLE EDGE CRACK IN A PLATE)

Comparative J vs a results for configuration 203 are shown in Table 4.3.4-1. Plane stress
and plane strain were considered as indicated. The results in Table 4.3.4-1 were calculated with
two different point loads: 1 and 25 ksi. This range of loads provided elastic (cases 1-3, 6-8),
elastic-plastic (cases 4, 9), and fully plastic (cases 5, 10) results. Material properties for the
calculations are listed in Table 4.3.1-2.
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Table 43.4-1. Representative Results for 203 J vs 2 Computations

Case | @ W o I Je Ip I JroTaL JtoraL
NASCRACTM | Reference | NASCRACTM | Reference | NascracTM | Reference
PLANE STRESS
1 2 8 1 1.4(10°3 14(10°3) | 6.0010°) | 6.0(10°15) 1.4(10°3 1.4(10°3
2 4 1 10102 | 10002) | 9100y | 93001y | 100107 | 1010
3 6 1 1.6(1071) | 17010 | 4.1(103) 4.1(103 1.6(10°Y 1.7(1071)
4 2 8 25 131 132 142 142 155 155
5 4 8 25 ™m 813 216(10%) | 2.1600% | 2.1700% | 2.17010%)
PLANE STRAIN
6 2 8 1 0.0011 0.0012 5.9(10°1%) | 4.7(10-16) 1.1(10-3 1.1(10°%)
7 4 8 1 0.008 0.0090 4101012y | 23310712y | 8.(10°3) 8.0(10°3)
8 6 8 1 0.11 0.13 3.0(10%) 1.2(10%) 110y | 11001
9 2 8 25 0.81 092 141 112 2.2 204
10 4 8 25 13.6 174 9.88(10%) | 5.5910%) | 9.89(10%) | 5.61(10%)

The J vs a solution for configuration 203, single-edge crack in a plate, is not valid for
plane-strain elastic-plastic and plastic fracture. Cases 9 and 10 and the J, results in cases 6-8
in Table 4.3.4-1.provide evidence of this invalidity. The reason for this invalidity is differences
between the NASCRAC™ h; values and [1] h; values as shown in Table 4.3.4-2. These
differences ranged as high as 63%.

Table 4.3.4-2. NASCRAC™ and Reference hy Values for Configuration 203 in Plane Strain

a/b n=1 n=3 n=35 n=10 n=13 n=16
NAS [1] NAS 1] NAS [1) NAS [1] NAS {1 NAS (1]

18| 495 5.01 857 9.09 115 127 16.1 217 18.1 273 199 344
14 ] 434 442 4,64 5.16 382 450 217 274 155 193 1.11 182
38| 388 397 263 2.88 1.68 1.92 054 0.70 028 0.40 0.14 022
12| 340 345 1.69 2.02 093 1.2 0.21 038 0.09 0.19 0.04 0.10
58 | 286 2.89 130 1.70 0.70 1.11 0.15 042 0.06 024 0.03 0.14
3/4 | 234 2.38 125 1.56 077 1.13 03 059 0.12 0.41 0.06 0.29
78| 191 1.93 137 143 1.10 1.18 0.70 0.81 na na na na

This J vs a solution was found to be valid in the specified ranges (0.0 <a/W <0.875,1 <n
< 20) for plane strain elastic fracture and for plane stress elastic, elastic-plastic, and plastic
fracture. The minor differences observed in the J. values in Table 4.3.4-1 for these cases were
due to different computational techniques. NASCRACT™ uses the linear version of the Jp
expression given in [1] whereas the reference value was calculated using Je = Ki2/E' with K| being
calculated using an effective crack length. Although the J. comparison is less agreeable in the
elastic-plastic and plastic regimes, this is inconsequential because J, dominates the total J solution
in these regimes. A comparison of the NASCRAC™ coded Py equation and J, equation with (1]
showed identical agreement.
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4.3.5 CONFIGURATION 204 (DOUBLE EDGE CRACKS IN A PLATE)

Comparative J vs a results for configuration 204 are shown in Table 4.3.5-1. Plane stress
and plane strain were considered as indicated. The results in Table 4.3.5-1 were calculated with
two different point loads: 1 and 25 ksi. This range of loads provided elastic (cases 1-3, 7-9),
elastic-plastic (cases 4, 10-11), and fully plastic (cases 5-6, 12) results. Material properties for the
calculations are listed in Table 4.3.1-2.

Table 4.3.5-1. Representative Results for 204 J vs a Computations

Case o Ie Je Ip I JroTAL JroTAL
NASCRACTM | Reference | NASCRACTM | Reference | NaAscRACTM | Reference
PLANE STRESS
1 1 8.1(10%) 8.0(10%) | 4701016 | 4.7(10°5) 8.1(10"% 8.0(10%)
2 1 1.8(10°3) 1.8(10°3) | 1.5(10°14) 1.5(10°14) 1.8(10°3) 1.8(10°3)
3 1 4.0(10°%) 400103 [ 12001 | 1200 400103 .| 4.0(103)
4 25 0.585 0.574 1.13 113 1.7 1.70
5 25 133 132 347 347 36.1 36.1
6 25 6.19 5.75 2.95(10%) 2.95(104) 2.95(10%) | 2.95(10%)
PLANE STRAIN
1 6.4(10% 7.110% | 71001 | 7.10071 6.4(10%) 7.1(10%)
1 14103 | 16003 | 820016 | 820107% | 140103 | 1.6109)
1 320103 | 350103 | 780014 | 7700 | 320107 | 350107)
10 25 0.420 0.468 0.169 0.169 0.589 0.636
11 25 0.937 1.05 1.97 1.97 2.90 3.02
12 25 224 279 185 183 187 186

The NASCRAC™ J vs a solution for 204 is generally valid in plane stress and plane strain
for the ranges specified in the documentation (0.125 < a/W < 0.875, 1 < n < 20). However,
several isolated differences between the h; tables in NASCRAC™ and [1] were discovered. For
plane stress, four discrepancies were found: n =16, a/W =0.5 and n = 20, a/W = 0.5, 0.625, and
0.75. For plane strain discrepancies in the NASCRAC™ h, table occurred for all n values at a/W
= (0.875 and for n=13 and 20 at a/W = 0.625.

Table 4.3.5-1 contains minor differences in J, between NASCRAC™ and the reference
value. These differences are due to different computational methods. NASCRAC™ uses the
linear version of the J, expression whereas the reference value was determined using J. = Ki2/E'".
The J. comparison, however, is reasonable in the elastic regime and diverges as the analysis
transitions into elastic-plastic and plastic conditions; therefore, the divergence is not significant until
Jp dominates the total J solution.
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A comparison of the coded Py equation with [1] showed identical agreement. In addition,
the coded J; equation was shown to reduce to the J; equation in [1]. Thus, as noted above, this
solution is valid except for the h; differences described.

4.3.6 CONFIGURATION 205 (AXIAL (ID) CRACK IN A HOLLOW CYLINDER)

Comparative J vs a results for configuration 205 are shown in Table 4.3.6-1. The results in
Table 4.3.6-1 were calculated with two different point loads: 1 and 30 ksi. This range of loads
provided elastic (cases 1-6), elastic-plastic (cases 7, 9, 11), and fully plastic (cases 8, 10, 12)
results. Material properties for the calculations are listed in Table 4.3.1-2.

Table 4.3.6-1. Representative Results for 205 J vs a Computations

Case a B R [+ Je Je JP Jp JTOTAL ]TOTAL
NASCRACTM | Reference | NASCRACTM| Reference | NASCRACTM| Reference

1 2 g8 | 40| 1 160103 | 10103 [ 1.2005) | 1.2109) 1.6(10°% | 100103
2 6 8 | 40] 1 0.028 0.020 3.0(10°1 | 310101 0.028 0.020
3 2 8 | 8| 1 1.4(10-3) 1.2(10-3) | 6.8(101%) | 6.8(10°1¢) 1401073 1.2(10°3)
4 6 8 | 80| 1 0.036 0.032 23a0-1 | 233101 0.036 0.032
5 2 8 {160} 1 1.2(10°3 13(10°3) | 5.6(10°'6) | 5.6(10°16) 1201073 | 133073
6 6 | 8 [160] 1 0.048 0.048 1.8(10° 1) | 1811071 0.048 0.048
7 2 8 | 40 ] 30 1.8 13 214 214 232 227
8 4 8 | 40 ] 30 144 76 919 919 934 927
9 2 8 | 80} 30 15 13 12.1 12.1 136 134
10 | 4 8 | 80 ] 30 178 140 593 593 611 607
11 2 8 | 160] 30 13 1.6 99 99 112 115
12 ] 4 8 [160] 30 19.1 264 525 525 544 551

The NASCRACT™ J vs a solution for configuration 205, axial inside crack in a hollow
cylinder, is valid for the ranges specified in the documentation (R/b = 5, 10, 20; 0.125 <a/b <
0.75; 1 £n<10). The original work from [1] used a table look-up based on a/W and n whereas
NASCRAC™ uses a look-up based on a/W and 1/n; however, the J, from NASCRAC™ and [1]
are in general agreement and vary only due to differences in the h; for a few isolated cases. More
significant differences exist between the NASCRAC™ J value and the reference J value. These
differences are due to different computational methods. NASCRACT™ uses the linear version of
the J, expression whereas the reference value was computed using J. = K;2/E. However, the J,
comparison is reasonable in the elastic regime. The J. comparison diverges more as the analysis
transitions into elastic-plastic and plastic conditions but by this stage the J solution is dominated by
Jp and hence the disagreement is not significant. Comparison of the NASCRAC™ coded Py
equation and J, equation with [1] showed identical agreement.
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4.3.7 CONFIGURATION 303 (CIRCUMFERENTIAL THROUGH CRACK IN A
CYLINDER)

Configuration 303 J vs a results from NASCRAC™ version 2.0 could not be generated
due to a runtime error. The runtime error, a divide by zero error, occurred because the variable P/
(Figure 4.3.7-1) was not defined in subroutine GETJS and therefore was automatically set to zero
by the computer. A second error, the definition of the mean radius of the cylinder (R/OB in
Figure 4.3.7-1), was also discovered. The mean radius was incorrectly defined in GETJS as the
inner radius plus one-half of the arc length (WIDTHS(1)), not the inner radius plus one-half the
cylinder wall thickness (W/IDTHS(2)). Both errors were corrected offline. Results from the
corrections, which are given in Table 4.3.7-1, are in good agreement with [2]. In Table 4.3.7-1, the
Reference columns represent results calculated from [2] and using J. = K{2/E’, the PI column
contains results from a offline code in which only the first error, the assignment of PI, was
corrected, and, finally, the P/ and Rm column contains results from the offline code in which both
errors were corrected. The results in Table 4.3.7-1 clearly indicate that merely defining P/ will not
make this J vs a solution valid.

SUBROUTINE GETJS (XFCTR)

XNC=SHARDN

C
C THRU WALL CRACK IN A CYLINDER
C

CAL=0.0625

CAH=0.5

XNL=1.

XNH=7.

AB=ANOW (1) / (PI* (WIDTHS (3)+0.5*WIDTHS (1)))
CALL WARNJ (AB, CAL, CAH, XNC, XNL, XNH)
B=WIDTHS (1)
T=WIDTHS (2)
RIOB= (WIDTHS (3) +0.5*WIDTHS (1)) /WIDTHS (2)
IF (RIOB.LE.7.5) THEN
CNAME="TCTS'
ELSE IF (RIOB.GT.7.5 .AND. RIOB.LE.15.) THEN
CNAME='TCT1'
ELSE
CNAME='TCTZ2'
END IF
CALL JINT
RETURN
END

Figure 4.3.7-1. Subroutine GETJS Showing Errors in PI and RIOB (Mean Radius) Assignments
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Table 4.3.7-1. Results from an Offline Version of Configuration 303 J vs a

Case Je Je Je Jp Jp Jp Jiotal Jiotal Jtotal
Reference Pi Pi & RIOB | Reference P Pi & RIOB | Reference P Pi & RIOB
1 220E+0 | 2.14E+0 229E+0 | 1.87E+2 | 1.61E+2 1.88E+2 | 190E+2 | 1.63E+2 1.90E+2
2 548E+0 | 5.15E+0 S5.88E+0 | 7.07E+2 | 491E+2 7.08E+2 | 7.13E+2 | 4.96E+2 7.14E+2
3 2.43E+1 1.59E+1 2.54E+1 | 6.63E+3 | 2.41E+3 6.62E+3 | 6.65E+3 | 2.42E+3 6.65E+3
4 3.64E+2 | 995E+1 6.17E+3 | 291E+6 | 3.60E+4 253E+6 | 291E+6 | 3.61E+4 254E+6
5 234E-3 2.26E-3 241E-3 2.57E-7 220E-7 2.57E-7 2.34E-3 2.26E-3 241E-3
6 5.62E-3 5.38E-3 6.06E-3 9.70E-7 6.74E-7 9.71E-7 5.62E-3 5.38E-3 6.06E-3
7 1.99E-2 157E-2 226E-2 9.09E-6 330E-6 9.08E-6 1.99E-2 1.57E-2 2.26E-2
8 1.80E-1 7.34E-2 234E-1 3.99E-3 494E-5 3.47E-3 1.84E-1 7.34E-2 2.38E-1
9 234E-3 2.26E-3 241E-3 5.43E-1 5.08E-1 5.43E-1 5.46E-1 5.11E-1 545E-1
10 5.62E-3 5.38E-3 6.06E-3 137E+0 | 1.21E+0 1.36E+0 | 137E+0 | 1.22E+0 1.37E+0
11 1.98E-2 1.57E-2 226E-2 | 5.10E+0 | 3.54E+0 S5.09E+0 | S5.11E+0 | 3.56E+0 5.11E+0
12 1.80E-1 7.33E-2 233E41 5.54E+1 1.65E+1 5.24E+1 | 5.56E+1 1.66E+1 5.26E+1

43.8 CONFIGURATION 401 (CIRCUMFERENTIAL CRACK (ID) IN A HOLLOW
CYLINDER)

results. Material properties for the calculations are listed in Table 4.3.1-2.

Table 4.3.8-1. Representative Results for 401 J vs a Computations

Comparative J vs a results for configuration 401 are shown in Table 4.3.8-1. The results in
Table 4.3.8-1 were calculated with two different point loads: 1 and 30 ksi. This range of loads
provided elastic (cases 1-6), elastic-plastic (cases 7, 9, 11), and fully plastic (cases 8, 10, 12)

Cse| a | b | R | o Je Je Ip Ip JroTaL ItoraL
NASCRACTM | Reference | NASCRACTM| Reference | NAsCRACTM| Reference
1 2 8 |40 1 790104y | 89(10%) | 4201076 | 4201016 | 7.9(104) | 8.9(10%
2 6 8 |40 ] 1 69010 | 730103 | 7.110%%) | 7.101012) | 69010-3) | 730103
3 2 8 | s0] 1 8.6(10"% 100103 | 4.9(10-¢) | 490101%) | 8.6(104) 1.(10°3)
4 6 8 18] 1 9.2(1073 1.100°Y) | 9.9(10-12) | 9.9(10-12) 9.2(10°3 1.1(10°2)
5 2 8 |160] 1 9.2(10%) | 120103 | 5301016 | 53(10°'¢) | 9.2(10%) 1.2(10°3
6 6 8 |160]| 1 1.2(10-2) 1.6(10-2) | 1200y | 12001 | 12010 1.6(10°%
7 2 8 | 40 ] 30 0.78 0.89 15 15 82 84
8 4 8 | 40 30 28 3.0 219 219 p72) 22
9 2 8 | s0{ 30 0.86 1.1 8.6 8.6 95 9.7
10 | 4 8 | 80| 30 39 4.6 291 291 295 296
11 2 8 |1e0] 30 093 13 95 95 104 10.8
12 4 8 |160] 30 5.2 7.7 370 370 375 378

The NASCRACT™ J vs a solution for configuration 401, inner diameter circumferential
crack in a hollow cylinder, is valid for the ranges specified in the documentation (0.0 < a/b £0.75,
1 < n <£20). The original work from [1] used a table look-up based on a/b and n whereas
NASCRACT™ uses a look-up based on a/b and 1/n; however, the J, from NASCRAC™ and (1]

4-84




are in agreement for all cases. Similarly, the NASCRAC™ h, tables and the h; tables in [1] are in
agreement. Differences in J. do exist between NASCRAC™ and the reference value in Table
4.3.8-1 due to different computational methods. NASCRAC™ uses the linear version of the J,
expression whereas the reference value was determined using J. = Ki2/E. The J. comparison,

however, is reasonable in the elastic regime and only diverges as the analysis transitions into
elastic-plastic and plastic conditions where J. is insignificant to the total J solution. A comparison

of the coded Pg equation with [1] showed identical agreement and a reduction of the coded J,
equation matched the J, equation in [1].

43.9 REFERENCES FOR SECTION 4.3

1. Kumar, V., German, M.D., and Shih, C.F., An Engineering Approach for Elastic-Plastic
Fracture Analysis, NP-1931, Research Project 1237-1, prepared by General Electric
Company for Electric Power Research Institute, July, 1981.

2. Kumar, V., et al, Advances in Elastic-Plastic Fracture Analysis, NP-3607, Research Project
1237-1, Final Report, prepared by General Electric Company for Electric Power Research

Institute, July, 1984.

4-85



44 CALCULATION OF CRACK OPENING AREAS

Five NASCRACT™ configurations have crack opening area (COA) solutions available.
These configurations include 201, 202, 301, 302, and 303. The COA solutions in NASCRAC™
were adapted from [1]. Verification and validation of NASCRAC™'s COA capabilities consisted
of code checks of closed form equations and comparative results using analytical and numerically
integrated solutions. No significant errors were discovered in the COA solutions; however,
several minor discrepancies were found. Table 4.4-1 lists these discrepancies and suggested
corrections. Each error is described in detail in sections following the table. NASCRAC™'s COA
solutions are valid once these errors have been corrected.

Table 4.4-1. Discrepancies in NASCRAC's COA Solutions

CONFIGURATION ERROR CORRECTION
201 PLANE STRAIN ASSUMPTION* | DOCUMENT THE ASSUMPTION
202 PLANE STRAIN ASSUMPTION* DOCUMENT THE
H/W 22 ASSUMPTION* ASSUMPTIONS
302 TYPOGRAPHICAL ERROR IN CORRECT SPELLING IN
SOURCE CODE SOURCE
303 TYPOGRAPHICAL ERROR IN CORRECT SPELLING IN
SOURCE CODE SOURCE

*  Not an error per se but an undocumented assumption that could lead to a misinterpretation

4.4.1 CONFIGURATION 201 (CRACK IN AN INFINITE PLATE)

Table 4.4.1-1. Representative Results for 201 COA

Comparative results for 201 COA Calculations
c COA COA

calculations are listed in Table 4.4.1-1. The | a E v NASCRACTM 2]
reference values in Table 4.4.1-1 were
computed by integrating the crack opening
displacement function from [2] over the crack | 93 30008 | 025 | 10| 49100%) | 491005
length per the following equation: 1.0} 300104 | 025 | 1.0] 1.96(107) 1.96(107)

0.1] 30(10% | 025 | 1.0 1.96(10°%) 1.96(10°%)

15| 30008 | 025 | 1.0 4.42(107 4.42(107)

4¢.[ 2 2 6 B _7
COAyp1=2 ] wVa -x dx 201 300009 ] 025 ] 1.0 7.85(10°7) 7.85(10°7)

E‘

0

251 300108 ) 025 | 1.0 1.23(10°%) 1.23(10%)

301 30010%)| 025 | 1.0 1.77010°%) 1.77(10%

In this equation E' = E for plane stress and
E/(1-v2) for plane strain and the origin for the
x axis is located at the center of the crack. The
integral was mulitplied by 2 because crack
symmetry was assumed.

351 300006} 025 | 1.0 2.41(10°6) 24110

40| 300109 | 025 | 1.0] 3.14(10°%) 3.14(10%)
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The coded solution in NASCRAC™ matches the integrated closed form solution exactly
for plane strain. Additionally, the NASCRAC™ and reference results in Table 4.4.1-1, which are
both plane strain results, agree. Thus, this solution is valid for plane strain. NASCRAC™™
documentation, however, does not identify this plane strain assumption to the user. If this solution
is used to calculate COA for plane stress, the computed results would underestimate the COA by
approximately 11% for aluminum because Poisson's ratio is relatively high (0.33) and hence the
(1-v2) term in the denominator of E' is not negligible. Therefore, the documentation for this
solution should be amended to clarify that the solution is for plane strain only. Additionally, the
documentation should clearly identify the expected units for material properties. For example,
with English units, yield stress, Young's modulus, and crack plane stress are input in ksi.

44.2 CONFIGURATION 202 (CENTER CRACKED PANEL)

Comparative crack opening area results for configuration 202 are shown in Table 4.4.2.-1.
[1] contains the closed form equation coded in NASCRAC™ and [3] contains a weight function
solution; hence, results from [1] verified the NASCRAC™ solution and results from [3] validated
the solution.

Table 4.4.2-1. Representative Results for 202 COA Calculations

s | W] E v|® NAScé(l)ZiCTM C&A C[(l) ]A
0.1} 10 | 30(108) | 0.25 | 1000 1.96(10°) n/a 1.96(10)
05] 10 § 30010} 025 | 1000 | 4.92(10°%) n/a 4.92(10°%)

2 1101300109 025 | 10| 803107 8.33(10°7)

4 |10 | 3009 ] 025 ] 1.0 | 3.46(10%) 3.46(100)

6 | 10 [ 300109 ] 025 | 10 | 9.0010%) 9.33(10°9)

8 | 10| 300109 ] 025 ] 10 | 2.20010% 2.17(10°5)
06| 5 | 301105 | 025 J 1000 | 7.12(105 n/a 7.12(10°%)
1.2] 5 | 30009 | 0.25 | 1000 2.92(10%) n/a 2.92(10%)
18| 5 | 30(06)] 025 | 1000 | 6.87(10%) n/a 6.87(10%)
24] 5 | 30009 025 | 1000 | 1311103 n/a 131(103)

The results listed in Table 4.4.2-1 are for plane strain. As with configuration 201, the 202
COA solution as coded is a plane strain solution. If this solution is used to calculate COA for
plane stress, the computed results would underestimate the COA by approximately 11% for an
aluminum panel because Poisson's ratio is relatively high (0.33) and hence the (1-v2) term in the
denominator of E' would not be negligible.

A comparison of NASCRAC™'s coded solution and a first order closed form solution

derived by integrating the near field displacement function from [1] agrees within 25%. The
discrepancy in this comparison was expected since the near field displacement function cannot
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adequately describe displacement from crack tip to crack center. The solution as coded exactly
matches the COA equation in [1] and the algorithm logic is functional as indicated by the identical
agreement between NASCRACT™ and [1] in Table 4.4.2-1. Table 4.4.2-1 also shows the
comparison of NASCRAC™ to [3]. The results from [3] are only valid for panel height to width
ratio (H/W) 2 2.

Based on the results in Table 4.4.2-1, the NASCRAC™ 202 COA solution is valid for
plane strain and H/W 2 2. For plane stress, the solution will underestimate the COA by a factor of
(1-v2). Therefore, the documentation for this solution should be amended to clarify that the
solution is for plane strain only. Additionally, the documentation should clearly identify the
expected units for material properties. For example, with English units, yield stress, Young's
modulus, and crack plane stress are input in ksi.

4.4.3 CONFIGURATION 301 (THROUGH CRACK IN A SPHERE)

Table 4.4.3-1 lists 301 COA results for NASCRAC™ and [1]. In this table R represents
the midsurface radius of the sphere, t is the wall thickness of the sphere, A is a/(t R)!/2, E is
Young's modulus, v is Poisson's ratio, and o is the membrane stress. The solution in [1] is limited
to0<A<3.

Table 4.43-1. Representative Results for 301 COA Calculations

e | R | ¢ | a=aeR)2 E v M I C[?]A
01| 20 | 02 0.158 30(10%) | 025 1.0 1.998(10°%) 1.998(10°7)
05 | 20 | 02 0.791 30(10%) | 025 1.0 7.110(10-%) 7.110(10°%)
10 | 20 | 02 1.581 30(10%) | 025 1.0 5.548(10'7) 5.548(10°7)
15 ] 20 | 02 2372 30(10%) | 025 1.0 2.288(10°%) 2.288(106)
1.0 | 100 | 02 1.000 30(10%) | 025 1.0 3.379(10°7) 3.379(10°7)
20 | 100 | 02 2.000 3(10%) | 025 1.0 3.101(10°9) 3.101(10°%)
30 | 100 | 02 3.000 30(10%) | 025 1.0 1.374(10°%) 1.374(10°5)

The 301 COA solution coded in NASCRAC™ compared exactly with the 301 COA
equation in [1]. Identical results in Table 4.4.3-1 between NASCRAC™ and [1] verify the
functionality of the coded algorithm. This COA solution is valid for the documented range of A
based on these two comparisons.

The documentation for this solution needs two clarifications: 1) clearly identify the input

radius as the inside radius of the sphere, and 2) document that the formulation is for thin walled
pressure vessels where o = pR/2t is the membrane stress and p is pressure.
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444 CONFIGURATION 302 (AXIAL THROUGH CRACK IN A CYLINDER)

Table 4.4.4-1 lists 302 COA results for NASCRAC™ and [1]. In this table R represents
the midsurface radius of the sphere, t is the wall thickness of the sphere, A is a/(t R)!72, E is
Young's modulus, v is Poisson's ratio, and ¢ is the circumferential membrane stress. The solution
in [1] is limited to 0 < A < 5.

Several A values (6.325, 9.487, 10.0) are highlighted in Table 4.4.4-1 as a means of
identifying the effects of a typographical error in this COA solution. This typographical error,
which is highlighted in the Figure 4.4.4-1, allows NASCRAC™ to execute the 302 COA solution
for an invalid A, i.e, A > 5. As shown in Figure 4.4.4-1, NASCRAC™ assigns a value to the
variable ALP and attempts to use this variable as a logic check in an IF-THEN statement. ALP,
however, is misspelled as APL in the second logic check of the IF-THEN statement. Since APL
has not been explicitly assigned a value, the computer implicitly sets it to zero. Thus, in the second
logic check APL is always less than 5 and hence NASCRAC™'s built-in error check will never
reach the third logic check where A (ALP) > 5 and an error statement is written. This error can
easily be fixed in future NASCRAC™ releases by implementing the correctly spelled variable.

Table 4.4.4-1. Representative Results for 302 COA Calculations

s |Rmia| t [ A=aeR)? E v ° | nascracT™ C[?]A
0.1 20 | 02 0.158 30(10%) | 025 1.0 1.99(10°%) 1.99(10%)
0.5 2.0 0.2 0.791 30(10%) | 025 1.0 6.83(10'%) 6.83(10°%)
10 | 20 | 02 1.581 30(10%) | 025 1.0 5.04(107) 5.04(107)
40 | 20 | 02 6325 30(10% | 025 1.0 6.63(10°%) n/a
60 | 20 | 02 9.487 30(10%) | 025 1.0 3.08(10~) nia
10 | 100 ] 01 1.000 30(10%) | 025 1.0 3.190107) 3.19(107)
50 | 100 | o1 5.000 30(10% | 025 1.0 6.92(10-%) 6.92(10°)
100 | 100 | 01 10.000 300108 | 025 1.0 9.44(10~) nla

The coded solution compares exactly to [1] in a line-by-line comparison and in the results
listed in Table 4.4.4-1 when 0 < A < §; therefore, this solution is valid when A does not exceed
these limits. A future NASCRAC™ release should correct the described typographical error. In
addition, the documentation for this solution needs two clarifications: 1) clearly identify the input
radius as the inside radius of the sphere, and 2) document that the formulation is for thin walled
pressure vessels where ¢ = pR/t is the circumferential membrane stress and p is pressure.
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C

SUBROUTINE GETCOA
302 CONTINUE

R=WIDTHS (3) +WIDTHS (2) /2.
ALP=ANOW(1) /SQRT (WIDTHS (2) *R)
IF (ALP.GT.0.0 .AND. ALP.LE.1.0) THEN
GOALP=ALP*ALP+0.625*ALP**4
ELSE IF (ALP.GT.l. .AND. APL.LE.S5.) THEN
GOALP=.14+0.36*ALP*ALP+0.72*ALP**3+0.405*ALP**4
ELSE
WRITE (NFLLPT, 2001)
2001 FORMAT (1X, 'ALPHA MUST BE BETWEEN 0 AND 5°')
RETURN
END IF
XK (IDEF, 1) =SIGINF*2.*3,14159*WIDTHS (2) *R*GOALP/YOUNGS
& *(1.-POISSN*POISSN)
GOTO 998

303 CONTINUE

R=WIDTHS (3) +WIDTHS (2) /2.
ALPH=ANOW (1) / (SQRT (R*WIDTHS (2)))
IF (0.0 .LT. ALPH .AND. ALPH.LE.1l) THEN
GOALPH=ALPH**2+0_.16*ALPH**4
ELSE IF (1. .LE. ALPH .AND. ALPH.LE. 5.0) THEN
GOALPH=0.02+0.81*ALPH**2+0.30*APLH**3+0.03*ALPH**4
ELSE
WRITE (NFLLPT,2001)
GOTO 998
END IF
XK (IDEF, 1)=SIGINT*2.*3.14159*R*WIDTHS (2) *GOALPH/YOUNGS
*(1.-POISSN*POISSN)
GOTO 998

RETURN
END

Figure 4.4.4-1. Typographical Errors in GETCOA for Configurations 302 and 303

4.4.5 CONFIGURATION 303 (CIRCUMFERENTIAL THROUGH CRACK IN A
CYLINDER)

Table 4.4.5-1 lists 303 COA results for NASCRAC™ and [1]. In this table R represents
the midsurface radius of the sphere, t is the wall thickness of the sphere, A is a/(t R)!/2, E is
Young's modulus, v is Poisson's ratio, and o is the circumferential membrane stress. The solution
in [1] is limited to 0 <A < 5.
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Table 4.4.5-1. Representative Results for 303 COA Calculations

a [Rmid| v | A=amr)l2 E v M SCC?{‘: o™ C(?]A
0.1 20 | 02 0.158 30(10%) | 0.25 1.0 1.97(10% 1.97(10°%)
05 | 20 | 02 0.791 30(10%) | 0.25 1.0 5.40(10'%) 5.40(10°%)
1.0 100 | 05 0.447 30(10%) | 025 1.0 2.03(107) 2.03(10°7)
1.5 100 { 05 0.671 30(10) | 0.25 1.0 4.74(10°7)
20 | 100 | 05 0.894 30(10%) | 0.25 1.0 8.86(10°7) 8.86(10°7)
1.0 | 20 | 02 1.581 30(10%) | 025 1.0 1.75(1077) 2.68(1077)
25 | 100 | 05 1.118 30(10%) | 025 1.0 1.47(107%)
30 | 100 | 0S5 1342 30(106) | 0.25 1.0 15410+%) 226(10%)
40 | 100 | 05 1.789 30(10%) | 025 1.0 2.87(10°%) 4.55(10°%)
50 | 100 | 0S5 2.236 30(106) | 025 1.0 4.73(10°%) 8.02(10%)

The COA results highlighted in Table 4.4.5-1 depict the effects of a typographical error the
303 solution. This error, which occurs in the variable ALPH in Figure 4.4.4-1 above, causes
NASCRAC™ 1o overestimate COA by 30-40% in some cases. In Figure 4.4.4-1, the final two
highlighted lines show that during calculation of GOALPH, the third order term of ALPH is
misspelled as APLH. This misspelling causes the aforementioned 30-40% overestimates results
when 1 < ALPH < 5. This error can easily be fixed in a future NASCRACT™ release by
implementing the correctly spelled variable.

The 303 COA coded solution compares exactly to [1] in a line-by-line comparison and in
the results listed in Table 4.4.5-1 when 0 < A < 1; therefore, this solution is valid forA<1. A
future NASCRAC™ release should correct the described typographical error. In addition, the
documentation for this solution needs two clarifications: 1) clearly identify the input radius as the
inside radius of the sphere, and 2) document that the formulation is for thin walled pressure
vessels where o = pR/2t is the longitudinal membrane stress and p is pressure.
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45  LIFE CALCULATION BY FATIGUE CRACK GROWTH

The life calculation by fatigue crack growth capabiliry in Table4.5-1. Fatigue Crack

. . g . . Growth Equations Coded
NASCRAC™ verification and vali w
C erification and validity evaluation was completed in two into NASCRAC

independent studies. The first study verified the NASCRAC™ code PARIS
using code checks and spread sheet analyses. This study included WALKER
verification of the NASCRACT™ crack growth logic in the relevant] MODIFIED FORMAN
subroutines and verification of the five coded fatigue crack growth COLLIPRIEST
equations in NASCRAC™. The five crack growth equations are listed in HOPKINS-RAU

Table 4.5-1.

The second fatigue crack growth study focused on the validity of the NASCRAC™ fatigue
crack growth results based on four distinct test sets. Descriptions of the four test sets are listed in
Table 4.5-2.

Table 4.5-2. Crack Growth Equations Coded Into NASCRAC™
TEST ID TEST DESCRIPTION PARAMETERS
I-1-A LIFE DUE TO FATIGUE | CONSTANT AMPLITUDE LOAD; NO TRANSITIONING
1-2-A LIFE DUE TO FATIGUE | CONSTANT AMPLITUDE LOAD; WITH TRANSITIONING
I-3-A LIFE DUE TO FATIGUE CONSTANT AMPLITUDE LOAD; RESIDUAL STRESS
FIELD
-1 PROOF TEST CONSTANT AMPLITUDE LOAD

4.5.1 VERIFICATION OF CODED CRACK GROWTH SUBROUTINES AND
EQUATIONS

Verification of the fatigue crack growth capability in NASCRAC™ included a check of the
crack growth equations for coding errors and a check of the algorithm for logic errors. The coding
check was accomplished by comparing NASCRAC™s five coded crack growth equations with
the NASCRAC™ theory manual and with the references listed in the manual. No coding errors
were discovered in the equations.

Spread sheets and a FORTRAN crack growth routine were constructed to verify the logic
of the crack growth algorithm. Results from these tools were compared to results from a stand
alone version of the subroutine DADNDT and its related subroutines. DADNDT is
NASCRAC™s driver subroutine for fatigue crack growth.

Tables 4.5.1-1 through 4.5.1-5 lists comparative results used to verify the crack growth
logic in NASCRAC™. Tables 4.5.1-1 through 4.5.1-3 show results from the Paris, Walker, and
Collipriest fatigue crack growth equations. These results were computed for a compact tension
specimen (configuration 101) subjected to 100 constant amplitude load cycles with P« = 20 kips,
Pmin = 4 kips, and R = 0.2. The geometry for the simulations was a; = 0.25”, plate width (W) =
3.0”, and plate thickness (B) = 1.0”. The typographical error in the K solution for configuration
101 (see Section 4.1.1.1) was negated in the verification spreadsheets by using the NASCRAC™
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version of the 101 K equation. The agreement between NASCRAC™ and the spreadsheet results
in Tables 4.5.1-1 through 4.5.1-3 verify that these three NASCRAC™ crack growth equations
(Paris, Walker, and Collipriest) are coded correctly and that the crack growth logic is correct for
constant amplitude loads when material properties are held constant, i.e., independent of

R.

Table 4.5.1-1. Representative Parls
Results for Constant Amplitude Loads

R=02,C=38(10") and n = 2.925.

CYCLE FORTRAN NASCRACTM
da/dN (105) | da/dN (10°5)
10 5.022 5.022
20 5.033 5.033
30 5.044 5.044
40 5.055 5.055
50 5.066 5.066
60 5.077 5.077
70 5.088 5.088
80 5.099 5.099
90 5.110 5.110
100 5.122 5.122

Table 4.5.1-3 Representative Collipriest
Results for Constant Amplitude Loads

R=02,C=38(10"),n = 2.925,K.=50.0, AK ¢, = 2.5

CYCLE | FORTRAN | NASCRAC™
da/dN (10%) da/dN (104
10 1.681 1.681
20 1.706 1.706
30 1.732 1.732
40 1.759 1.759
50 1.786 1.786
60 1.815 1.815
70 1.844 1.844
80 1.874 1.874
90 1.906 1.906
100 1.939 1939

Table 4.5.1-2. Representative Walker
Results for Constant Amplitude Loads
R=02,C=38(10%, m = 2.925, n = 2.925.

CYCLE FORTRAN | NASCRACTM
da/dN (10%) | da/dN (10-5)
10 1.427 1.427
20 1.428 1.428
30 1.429 1.429
40 1.430 1.430
50 1.431 1.431
60 1.432 1.432
70 1.433 1.433
80 1.434 1.434
90 1.434 1.434
100 1435 1.435

Results from the verification of
NASCRAC™’s Hopkins-Rau fatigue crack
growth algorithm are presented in Table 4.5.1-4.
These results were computed for a 203
specimen (single edge crack in a plate) subjected
to 2000 constant amplitude load cycles with
smax = 25 ksi, smin = 20 ksi kips, and R = 0.8.
The geometry for the simulation was aj = 0.1”
and plate width (W) = 10.0”. The plate
thickness was uniform with a value of unity.
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Table 4.5.1-4 Representative Hopkins-Rau Results for Analyzing the Hopkins-Rau equation
Constant Amplitude Loads . .
was difficult because independent references

R=038,C=1.07(10%), m=2.925K_=300, . )
AK¢p = 25, Rey = 1.73, Agp = 141, Bgp = 1.73 were not readily available. Reference [1], the

CYCLE | HOPKINS-RAU HOPKINS- | NASCRACTM NASCRACTM r?ference for the HOpkiﬂS'Rau
NASCRACTM | RAU BIGIF equation, describes experimental work and
ALGORITHM | ALGORITHM hints at a form of the crack growth equation but

200 1006 1002 1006 does not explicitly list the equation or an
400 1012 .1005 1012 . .
=00 019 000 o1 algorithm for the equation. Reference [2],
i . . " o
300 05 1009 1035 another N,'.%SCRACT reference for Hopkms
1000 1032 1011 1032 Rau, contains an explanation of equations and
1200 1038 1014 .1038 describes and lists the algorithm coded in the
1400 .1045 1016 .1045 BIGIF code. Apparently, the NASCRAC™
1600 1051 1018 1051 solution was adapted from BIGIF; however,
1800 ;1058 1021 1058 the two solutions are coded differently and
2000 1065 1023 .1065

compute slightly different results as shown in
Table 4.5.1-4. Based on this comparison with
the BIGIF algorithm, the Hopkins-Rau crack growth equation algorithm in NASCRAC is
not valid. Use of this NASCRACT™ capability should be avoided.

The modified Forman equation is shown in equation 4.5.1-1. Constant amplitude
spreadsheet calculations for this equation compared identically to NASCRAC™ results as shown
in Table 4.5.1-5. These results were computed identically to the Paris, Walker, and Collipriest
results in Tables 4.5.1-1 through 4.5.1-3, i.e., for a compact tension specimen subjected to 100
constant amplitude load cycles with Ppax = 20 kips, Ppin = 4 kips, and R = 0.2. In these
spreadsheet calculations, the material constants for the equation did not depend on R ratio.
However, [3] discussed two errors in the NASCRAC™ modified Forman algorithm which are
evident when results are compared to NASA/FLAGRO results. First, the material constant m in
this equation is a function of R in the original formulation [4]. Second, K, the fracture toughness,
depends on thickness in [4] as shown in equation 4.5.1-2. As coded in NASCRAC™ these two
parameters are constant with m = 0 and K¢ set in the material library or by the user. To
demonstrate the effects of these coding errors, a parametric study was conducted which compared
modified Forman results from NASCRAC™, NASA/FLAGRO, and a FORTRAN routine
specifically coded for the study.

d p
AK —-(1-C,R)? AK
£=C(1—R)"’AK”[ (1=Coly 8Ky eq.  45.1-1
dN [(1-RK, - Ak1?

K¢ = (1 + Bge®) Ky eq. 45.1-2
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Table 4.5.1-5 Representative Modified Forman
Results for Constant Amplitude Loads
R=02,C=38(10%,m=00,n = 2897,
Co=d=1,p=q=05,K_=43.6,AK¢,, =25

CYCLE FORTRAN NASCRACM
da/dN (10%) da/dN (10%)
10 2.089 2.089
20 2.120 2.120
30 2.153 2153
40 2.186 2.186
50 2221 2221
60 2257 2257
70 2294 2.294
80 2332 2332
90 2372 2372
100 2413 2413

The parametric study computed the
fatigue life for an edge crack in a plate
(Configuration 203 in NASCRAC™) using the
three previously mentioned programs:
NASCRACT™, FLAGRO, and a FORTRAN
routine. The FORTRAN routine used the K
solution from the NASCRAC™ manual plus the
material properties for AL 2219-T851 found in
the NASCRAC library. These properties were
identical to those in the FLAGRO library. In the
FORTRAN code, all material properties were
held constant and da/dN was computed cycle by
cycle. Four different load cases were calculated:
R = 0.0, 0.2, 0.5, and 0.8. The results of the
study are presented in Table 4.5.1-6

The agreement between the NASCRAC™ and FORTRAN results in Table 4.5.1-6 and the
disagreement with FLAGRO indicates that NASCRAC™ maintains a constant m throughout its
modified Forman fatigue crack growth calculations. By maintaining m= 0, The (1-R)M term in
the modified Forman equation becomes unity in all cases. In the four cases in Table 4.5.1-6,
FLAGRO calculated the m value as 0.0, -1.645,- 0.803, and -0.0658 for R = 0.0, 0.2, 0.5, and 0.8
respectively. Since m is frequently less than zero, setting m= 0 causes NASCRAC™ (o compute
a reduced crack growth rate when R > 0.0.

Table 4.5.16. NASCRAC™, FLAGRO and FORTRAN code Values of a Parametric Study for Configuration 203
(W =10", t=1", G ppay = 25 ksi)

R=0
Cycles _ a Ky ___daidN
NASCRACTM | FORTRAN | FLAGRO | NASCRACTM | FORTRAN | FLAGRO NASCRACTM FORTRAN | FLAGRO
0 .1000 -— -— 15.77 - - 2.18e-5 -— -—

500 1123 1121 122 16.72 16.70 16.69 2.73e-5 2.71e-5 | 2.71e-5
1000 1279 1275 1275 17.85 17.83 17.83 3.50e-5 3.47e-5 | 3.48e-5
1500 1479 1474 .1475 19.20 19.17 19.20 4.63e-5 4.60e-5 | 4.62e-5
2000 1754 1745 .1747 2092 20.89 2091 6.48e-5 6.41e-5 | 6.45e-5
2500 2152 2138 2142 23.22 23.15 23.15 9.82e-5 9.66e-5 | 9.66e-5
3000 .2800 270 2 26.57 2643 2645 1.71e4 1.66e-4 1.67e-4
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Table 4.5.1-6. NASCRAC™ FLAGRO and FORTRAN code Values of a Parametric Study for Configuration 203
(W =10",t=1", Gpax = 25 ksi) (Continued)

R=0.2
Cycles _ a _ Km ___dadN
NASCRACTM | FORTRAN | FLAGRO | NASCRACTM | FORTRAN | FLAGRO | NASCRACTM | FORTRAN | FLAGRO
0 .1000 - - 15.77 - -— 1.14e-2 - -
1000 1131 1128 1196 16.77 16.75 17.24 1.45e-5 143e-5 | 231e-5
2000 1296 1291 1481 17.96 17.94 19.21 1.88e-5 1.86e-5 | 351e-5
3000 1515 1508 1940 1943 19.40 22.06 2.55e-5 252e-5 | 6.02e-5
4000 1820 1809 2821 2132 21.27 26.70 3.66e-5 3.6le4 | 132e4
5000 2280 2261 .6032 239 23.82 39.73 5.79¢-5 5.68e-5 1.08e-3
6000 3073 3035 n/a 27.87 27.70 n/a 1.10e4 1.07e4 n/a
R=05
Cycles [ K max da/dN
NASCRACTM | FORTRAN | FLAGRO | NASCRACTM | FORTRAN | FLAGRO | NASCRACTM | FORTRAN | FLAGRO
1000 1032 1033 1054 16.02 16.00 16.21 3.11e-6 311e-6 | 5.64e-6
5000 J173 1170 1338 17.08 17.06 18.26 398e-6 3.95e-6 | 8.88e-6
10000 1411 .1405 2000 18.75 18.72 235 5.68e-6 5.63¢-6 | 1.97e-5
15000 .1763 1755 4118 20.98 2094 3243 8.78e-6 8.79e-6 | 9.73e-5
20000 2351 2335 n/a 24.30 2422 n/a 1.58e-5 1.56e-5 n/a
25000 3612 3515 n/a 30.30 29.88 n/a 4.09e-5 3.82e-5 n/a
R=08
Cycles _ a _ Kmx _ da/dN
NASCRACTM | FORTRAN | FLAGRO | NAscrACTM | FORTRAN | FLAGRO | NASCRACTM | FORTRAN | FLAGRO
1000 .1002 1002 1002 15.78 15.78 15.79 2.07e-7 2.07e-7 | 230e-7
50000 1114 1114 1128 16.66 16.65 16.77 254e-7 2.53e-7 | 2.89%e-7
100000 .1260 .1256 .1293 17.711 17.68 17.96 321e-7 3.18e-7 | 3.75e-7
200000 .1687 1677 1813 20.52 2047 21.32 5.67e-7 5.60e-7 | 7.30e-7
300000 2543 2521 3054 25.29 25.18 27.19 1.31e-6 1.28e-6 | 2.17e-6

Since the disagreement between NASCRAC™ and FLAGRO was caused by setting m =
0in NASCRACT™, it was necessary to verify NASCRAC™ if an appropriate m was used. To
verify the code, NASCRAC™ was executed with a constant amplitude load spectrum using an
m equivalent to one output from FLAGRO. Table 4.5.1-7 shows the results of these
computations. In this table, the NASCRAC™ results using the FLAGRO m agree well with the
FLAGRO results. These results verify that the observed problem in NASCRAC™ can be
corrected for constant amplitude loading by inputting the correct value of m. However, it
should be noted that a simple fix is not possible for variable amplitude loading because m has
to be computed for each given R ratio.
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Table 4.5.1-7. Parametric Study for Configuration 203 using NASCRAC™ , FLAGRO and NASCRAC

with FLAGRO m values (W =10.0", t =1.0", O 0y = 25 ksl)

R=0 R=02
Cycles da/dN Cycles da/dN
NASCRACT™™/| Inputm | FLAGRO NASCRAC™| Inpuum | FLAGRO
0 2.18e-5 2.18e-5 n/a 0 1.14e-2 1.65e-5 n/a
500 2.73e-5 2.73e-5 2.71e-5 1000 1.45e-5 2.33e-5 2.31e-5
1000 3.50e-5 3.50e-5 3.48e-5 2000 1.88e-5 3.53e-5 351e-5
1500 4.63e-5 4.63e-5 4.62e-5 3000 2.55e-5 6.03e-5 6.02e-5
2000 6.48e-5 6.48e-5 6.45¢-5 4000 3.66e-5 1.33e4 1.32¢e4
2500 9.82¢-5 9.82e-5 9.66e-5 5000 5.79¢-5 n/a 1.08e-3
3000 1.71e4 1.71e4 1.67e-4 6000 1.10e-4 n/a n/a
R=05 R=08
Cycles da/dN Cycles da/dN
NASCRACT™™| Inputm | FLAGRO NASCRAC™ | Inputm FLAGRO
1000 3.11e-6 5.79¢-6 5.64e-6 1000 2.07e-7 2.30e-7 2.30e-7
5000 3.98e-6 9.24e-6 8.88e-6 50000 2.54e-7 2.90e-7 2.89e-7
10000 5.68e-6 2.12e-5 1.97e-5 100000 3.21e-7 3.77e-7 3.75e-7

K. in FLAGRO is computed according to equation 4.5.1-2; therefore, K. in NASCRAC™
does not match K. in FLAGRO except for a plate thickness of unity. FLAGRO requires a
thickness input for this computation whereas NASCRAC™ assumes the thickness to be unity for
the case of constant thickness. Using the K. equation listed above, the FLAGRO calculated K, for
Al 2219-T851 and a plate thickness of 1" is 43.6 ksi. This calculated value is the same as the
NASCRAC™ database K. value. But for a case with thickness of 2", the FLAGRO calculated K.
for Al 2219-T851 is 30.64 ksi whereas the NASCRAC™ database K. is 43.6 ksi. If the
NASCRAC™ K, value is larger than the FLAGRO value, the computed NASCRAC™ da/dN

will again be reduced compared to the FLAGRO computation.

The Paris and Walker equations were used to
verify NASCRAC™'s spectrum loading capability and
implementation of the R ratio dependency. For each of
these equations and the compact tension configuration, a
spread sheet of 186 cycles with eight different loading
blocks was created to calculate da/dN and crack length. A
description of the load spectrum is given in Table 4.5.1-8.
Three different R values were considered: 0.1, 0.0, and
-1.0. The values of da/dN and crack length from the
spread sheet of each equation were compared cycle by
cycle to results from the NASCRAC™ code. For both

the Paris and Walker equations, exact agreement with the FORTRAN calculated reference solution
was observed for each R value when the input material constants (m, C) were assumed

independent of R .
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Table 4.5.1-8. Loading Spectrum for

Verification of Spectrum Loading Capability

BLOCK | MAXIMUM | CYCLE

LOAD S

1 19.5 10

2 0.5 4

3 1.0 4

4 0.5 4

5 6.0 100

6 8.0 50

7 30.0 4

8 28.0 10




4.5.2 VALIDATION OF FATIGUE CRACK GROWTH RESULTS USING TESTS WITH
CONSTANT AMPLITUDE LOADS

Fatigue crack propagation tests were performed under constant amplitude loading on 2219-
T851 aluminum in four series of tests; I-1-a, I-2-a, I-3-a and IlI-a. The loading parameters for
these tests are defined in Figure 4.5.2-1. These tests are described in Sections 4.5.2.1 through
45.25.

- time

Figure 4.5.2-1. Load Parameters for Constant Amplitude Fatigue

4.5.2.1 Test Series I-1-a: Fatigue Crack Propagation Without Transitioning

The geometry for test series I-1-a is defined in Figure 4.5.2.1-1. Two distinct sets of tests
were performed in this series. The two sets had similar geometry but different dimensions. These
sets were denoted I-1i-a and I-1ii-a. The average dimensions for the two sets in this series are
given in Tables 4.5.2.1-1 and 4.5.2.1-2. Constant amplitude loads were applied to the test
specimens until a transition occured. For this series, a transition was defined as either crack tip 1
reaching corner a or crack tip 2 reaching corner B, as defined in Figure 4.5.2.1-1. The number of
cycles before transition, denoted /1, was calculated by fitting a quadratic polynomial to crack
lengths measured for the two 5000 cycle intervals just before transition and the crack length
measured for the first 5000 cycle interval following the transition. The number of cycles for which
the crack tip would be at the corner was interpolated from this polynomial. In all tests performed
in both sets of this series, crack tip 2 determined the transition.

Experimentally-observed and NASCRAC™-predicted crack lengths for test set I-1i-a are
shown in Figures 4.5.2.1-2 and 4.5.2.1-3. The number of cycles before transition, /1, is not
available for test I-1i-a/1. Therefore, this test is not considered in the averages of Table 4.5.2.1-1.
The input for the NASCRAC™ analysis is summarized in Table 4.5.2.1-3. A photograph of a
typical post-transition crack surface is shown in Figure 4.5.2.1-4.
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Table 4.5.2.1-1. Average Dimensions for Test Set I-1i-a

Figure 4.5.2.1-1. Geometry for Test Series I-1-a

Table 4.5.2.1-2. Average Dimensions for Test Set I-1ii-a
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NUMBER OF TESTS 3 NUMBER OF TESTS 4
DIMENSI | AVERAGE VALUE | UNITS DIMENSION AVERAGE VALUE UNITS
ON al(0) 0.252 INCHES
al(0) 0.263 INCHES a2(0) 0.258 INCHES
a2(0) 0.253 INCHES bl 3.000 INCHES
bl 3.000 INCHES b2 0.502 INCHES
b2 0.503 INCHES b3 0.498 INCHES
b3 0.497 INCHES b* 1,958 INCHES
b* 0521 INCHES Ap 11.66 KIPS
Ap 11.65 KIPS R-ratio 0.201 -
R-ratio 0.200 - 1} 42,120 CYCLES
I 29,170 CYCLES




Table 4.5.2.1-3. NASCRAC:-Input for Analysis of Test Set I-1i-a
NASCRACT™ INPUT VALUE CORESPONDING
TEST DIMENSION
MODEL 601 I-1-a
GEOMETRY al 0.263 al(0)
a2 0.253 a2(0)
B 0.521 b*
t 0.503 b2
r 0.249 b3/2
w 3.000 bl
LOADING TRANSIENT 1 500 CYCLES FATIGUE LOADS:
RANGE: EQ. A 172 FIGURE 5.5.2-1
R-RATIO 0.200 TABLE 4.5.2.1-1
BLOCK 1IX TRANSIENT |
MATERIAL 2219-T851 AL, ALUM3 2219-T851
PROPERTIES T-L & L-T 75F #104 LAB AIR
0.8
1
] o)
0.7
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Figure 4.5.2.1-2. Experimentally-Observed and NASCRAC'?M -Predicted

Crack Length al Versus Cycles for Test Set I-1i-a
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Figure 4.5.2.1-3. Experimentally-Observed and NASCRAC™ -Predicted
Crack Length a2 versus Cycles for Test Set I-1ii-a
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Figure 4.5.2.1-4. Typical Post-Transition Crack Shape for Test Set I-li-a

NASCRAC™-predicted /1 is 65.000 cycles, approximately 120% greater than the average
experimentally-observed /1 for this test set. For nearly the entire NASCRAC™.-predicted fatigue
life, NASCRAC™-predicted crack lengths ai and a2 do not match experimentally-observed crack
lengths.

To investigate the source of these discrepancies, three boundary element analyses were performed.
Elliptical crack fronts, connecting crack tip locations observed in test I-1i-a/4 at 10,000 and 20,000
cycles, and the initial notch were analyzed with FRANC3D. These fronts are shown in Figure
4.5.2.1-5. The loading for these analyses was the far field stress corresponding to the amplitude of
fatigue loads applied to this test. NASCRAC™ stress intensity factor calculations were performed
using the same geometry and applied loads as in the FRANC3D analyses.

The FRANC3D- and NASCRAC™-calculated stress intensity factors are shown in Figures
4.5.2.1-6 through 4.5.2.1-8. FRANC3D caclulates stress intensity factors along the entire crack
front. NASCRACT™ calculates RMS-average stress intensity factors for each crack tip. As
anticipated, FRANC3D calculated Kyj and Kyjj are less than 1% of Kj values.

~t A e E ‘S
ORIGIHAL PAG
OF POOR QUALITY
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Figure 4.5.2.1-8 Comparison of FRANC3D- and
NASCRC™ C.Calculated K for 20,000
Cycle Elliptical Crack Front

The FRANC3D-calculated stress intensity factors vary as much as 4.5 ksivVinch along

each crack front, and are highest near tip 2 and lowest near the middle of the crack front.
NASCRAC™-calculated stress intensity factors do not match the FRANC3D-calculated stress
intensity factors near the two crack tips. This difference could explain the difference between
predicted and observed crack growth rates. An RMS average of the FRANC3D-calculated stress
intensity factors would be closer to the NASCRAC™-calculated values. The RMS averaging is
investigated in the discussion of set i1 of this test series.

4-103



A check on the applicability of linear elastic fracture mechanics (LEFM) should be
considered. The FRANC3D analyses indicate that gross section yielding would not occur in these
tests. The process zone surrounding the crack front must also be evaluated. A first order estimate
of the plane stress process zone size is,

1 K?
r,=———s 452.1-1
Y 2no}

All relevent dimensions should be much larger than this length. Often, it is assumed that
ten times the process zone size is required for LEFM. The following analysis is based on the
maximum FRANC3D-calculated stress intensity factors along the crack front at the maximum
load applied during a fatigue cycle. These values are 12.2 ksivVin for the initial notch and 17.5
ksiVin for the 20,000 cycle elliptical crack front. Assuming a yield stress of 53 ksi, the process
zone size estimated by equation 4.5.2-1 is 0.0084 inches for the intial notch and 0.017 inches for
the 20,000 cycle elliptical front. With a curved crack front in three dimensions, it is not clear what
“length” should be compared to the process zone size. However, there is greater than 0.17 inches
of uncracked ligament near the middle of the crack front for the entire fatigue life that is considered
in this test series. Therefore, it is reasonable to assume that LEFM is applicable for this
configuration for most of the fatigue life before the transition. This check does not need to be
performed on set ii; the ligament in set ii is larger than that of set i, and the slower crack growth in
set ii indicates lower stress intensity factors.

In summary, NASCRAC™™-predicted fatigue life is significantly longer than the
experimentally-observed life in Test Set I-1i-a. Based on the discussion in this section, the
following conclusions may be made regarding this observation:

« FRANC3D-calculated stress intensity factors near the crack tips of the three cracks
analyzed are up to 50% greater than NASCRAC™-calculated stress intensity factors. This
difference is enough to explain the difference between NASCRAC™.-predicted and
experimentally-observed number of cycles before transition, /1.

« Some, but not all of the difference in calculated stress intensity factors might be explained
by RMS averaging along the crack front. The RMS averaging will be investigated later in
this section.

The geometry for Test Set I-lii-a is similar to that of Test Set I-li-a, and is shown in
Figure 4.5.2-1. Average dimensions for Test Set I-lii-a are given in Table 45.2.1-2.
Experimentally-observed and NASCRAC™-predicted crack lengths for Test Set I-1ii-a are shown
in Figures 4.5.2.1-9 and 4.5.2.1-10. The input for the NASCRAC™ analysis are summarized in
Table 4.5.2.1-4. In addition to the four tests described in Table 4.5.2.1-2, a fifth test was
performed. This test was similar to the other four tests, but was stopped prior to transition to

4-104



allow the pre-transition crack front to be seen. This crack front is shown in Figure 4.5.2.1-11. A
photograph of a post-transition crack front from Test Set I-lii-a is shown in Figure 4.5.2.1-12.

Table 4.5.2.1-4. NASCRAC™ Input for Analysis of Test Set I-1ii-a

NASCRAC™ INPUT VALUE CORESPONDING
TEST DIMENSION
MODEL 601 I-1-a
GEOMETRY al 0.252 al(0)
a2 0.258 a2(0)
B 1.958 b*
t 0.502 b2
r 0.249 b3/2
w 4415 bl
LOADING TRANSIENT 1 1000 CYCLES FAR FIELD STRESS
FROM
RANGE: EQ. A 7.74 FATIGUE LOADS:
R-RATIO 0.201 FIGURE 4.52-1
BLOCK 1X TRANSIENT 1 TABLE 4.5.2.1-3
MATERIAL 2219-T851 AL, ALUMS3 2219-T851
PROPERTIES T-L & L-T 75F #104 LAB AIR
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Figure 4.5.2.1-12. Typical Post-Transition Crack Shape for Test Set I-lii-a

The NASCRAC™-predicted cycles before transition, /1, is approximately 60% greater than
the experimentally-observed number of cycles before transition. NASCRAC™-predicted crack
length a1 is within the range of experimentally-observed crack length a1 for the first 40,000 cycles
of fatigue crack growth. NASCRAC™-predicted crack length a2 is outside the range of
experimentally observed crack length a2 after 20,000 cycles of fatigue crack growth.
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The geometry for this set of tests cannot be modeled directly by NASCRAC™. The code
requires the crack to grow into the smaller of the two ligaments. While not an error, this is a
shortcoming in the program. A substitute geometry, denoted I-lii-w, was used for the
NASCRAC™ analysis of this test set. The geometry for test set I-1lii-a is denoted I-1ii. The two
geometries are shown in Figure 4.5.2.1-13. The only difference between geometry I-1ii-w and
geometry I-1ii is that the width of the specimen is increased so the uncracked ligament is slightly
larger than the cracked ligament. The far field stress for the NASCRAC™ analysis was chosen to
match that calculated for the tests.

To determine whether the
substitute geometry was appropriate
to model the actual set of tests, two-
dimensional stress intensity factor
calculations were performed using

FRANC2D. The geometries used
O O for these analyses were similar to
those shown in Figure 4.5.2.1-13.

However, a through crack was
assumed so that two-dimensional

B = 1.958" B = 1.958"

W = 3.000" W = 4.415"
r“ > e > analyses could be used. Plots of K
versus crack length a1, for a1= 0.05
\%¢ to 0.55 inches are shown in Figure
4.5.2.1-14. For all crack lengths
a) GEOMETRY I-1ii b) GEOMETRY F1il-w analyzed, the stress intensity factor
for the substitute geometry, I-1ii-w,
Figure 4.5.2.1-13. Experimental Geometry I-1il and Substitute is is less then the stress intensity
Geometry I-1l-w factor for the experimental

geometry, I-1ii. The difference is 6% for a = 0.05 inches and increases to 9% for a = 0.55 inches.
Given these stress intensity factors, the modified Forman parameters in the NASCRAC™ material
library for 2219-T851 aluminum predict crack growth rates for geometry I-1ii-w 15% to 30% less
than for geometry I-1ii. This analysis indicates that the two geoemtries might have significantly
different fatigue lives. However, there are limits to how well a two-dimensional analysis can
model a three-dimensional quarter-elliptical crack shape. Therefore, further conclusions can not be
drawn from the two-dimensional analyses.
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Two three-dimensional boundary
clement analyses were performed for a
quarter-elliptical crack with a; = 0.248
inches and ap = 0.256 inches. This crack
is comparable to the size and shape of an
initial notch in this test series. The first
analysis used geometry I-1ii. The second
analysis used the substitute geometry I-
lii-w. The loading for both analyses was
the far-field stress corresponding to the
load amplitudes in this set of tests. A
NASCRACT™ analysis was performed
using the same geometry and loads as the
second boundary element analysis.
FRANC3D-calculated stress intensity
factors from both both boundary element
analyses, and the NASCRACTM-

calculated stress intensity factors are shown in Figure 4.5.2.1-15. FRANC3D calculates stress
intensity factors along the entire crack front. NASCRAC™ calculates RMS-averaged stress

intensity factors for each crack tip.

Due to the averaging involved in
NASCRACTM-calculation of stress
intensity factors, FRANC3D and
NASCRAC™ calculate two different
types of stress intensity factors. To
provide a better means of comparison,
FRANC3D K’s were averaged in the
manner described in Section 2.3 of the
NASCRAC™ Theory Manual. These
values are denoted FRANC3D K(i),
where i 1is a crack tip. To ease
calculations, it was assumed that values of
stress intensity factors were distributed
along equal increments of the angle ¢.
Actually, these values were distributed
along equal length increments along the
crack front s, Figure 4.5.2.1-16. As the
crack front analyzed was nearly a circle

STRESS INTENSITY FACTOR (kslvin)

14
12 4
10 4
a4
8-
\
6-
4-
__ FRANC3D I-ii
2 4 « FRANC3D I-1il-w
4 NASCRAC I-1il-w
o v L L] L) | L) T L}
0 0102 03 04 05 0.6 0.7 0.8 09 1
TiP1 NORMALIZED CRACK FRONT TIP 2

Figure 4.5.2.1-15. FRANC3D- and NASCRAC™ .Calculated K

for Initial Notch

(al =0.248 , a2 = 0.256 inches) the maximum error in the As associated with any spanned A¢ is
2.5%. The results of these calculations are shown in Table 4.5.2.1-5.
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Figure 4.5.2.1-16. Definition of Angle ¢ and Length s for K Calculations

Table 4.5.2.1-§ Comparison of Calculated SIF's for Initlal Notch

Ky H®DIFFERENCE | K;  %DIFFERENCE | Kmax % DIFFERENCE
SOLUTION | yiviy FROM FRANC3D | , .’ FROM FRANC3ID | ksiin ~ FROM FRANC3D
i K1) i K(2) I1ii Kmax
FRANC3D | 79 - 93 - 122 -
I-tii
FRANC3D | 77 25% 9.0 32% 118 33%
I-lii-w
NASCRAC | 73 7.6% 8.6 75% 8.6 29.5%
I-1i-w

The difference between FRANC3D calculated stress intensity factors for the two
geometries, no more than 3.3%, is less than the difference calculated by the two-dimensional
analyses shown in Figure 4.5.2.1-14. The trend of Figure 4.5.2.1-14 indicates that this difference

would increase as the crack size increases.

The difference between NASCRAC™- and FRANC3D-calculated K is less than the
accuracy given for some of the other NASCRAC™ geometries (10% for models 605 and 702, for
example). This difference would cause differences in predicted fatigue life. However, the
difference between the maximum FRANC3D K (at tip 2) and the NASCRAC™ K(2) is much
larger. According to the modified Forman parameters given for 2219-T851 aluminum in the
NASCRAC™ materials library, the 30% difference results in crack growth rates that vary by more

than a factor of two.
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In general, as the crack propagates, the variation of stress intensity factors along the crack
front should reduce. The difference between the RMS average stress intensity factors and the
maximum stress intensity factors along the crack front will reduce as the varaition along the crack
fronts reduce. However, the difference does not appear to reduce for the elliptical crack shapes
analyzed for Test Set I-1i-a. The crack front from Test I-1ii-a/9, shown in Figure 4.5.2.1-7, does
not intersect the free surface at 90° at crack tip 2. This shows that the observed crack front is not
elliptical. It is possible that the difference between the actual and NASCRACT™ crack shapes
accounts for some of the difference in observed and predicted crack growth rates. This issue
requires further investigation.

From the observations of Figures 4.5.2.1-9 and 4.5.2.1-10, it is apparent that the
NASCRAC™.-predicted number of cycles before transition, /;, is significantly greater than I,
experimentally-observed in Test Set I-lii-a. The following conclusions may be made regarding
this observation:

» The effect of the substitute geometry on stress intensity factor calculation is small
compared to other errors in stress intensity factor calculation.

« The difference between FRANC3D RMS K’s and NASCRAC™ K’s for configuration
601 is within the accuracy bounds published for other NASCRAC™ configurations.
However, this difference does account for some of the observed fatigue life discrepancies.

» The difference between the maximum FRANC3D-calculated stress intensity factors and
the NASCRAC™-calculated stress intensiy factors for model 601 is likely to explain most
of the difference between NASCRAC™-predicted and experimentally-observed /1 for test
series I-1-a.

45.2.2 Test Series I-2-a: Fatieue Crack P i ith T itioni

The geometry for this test series is described in Figure 4.5.2.2-1. Average dimensions are
given in Table 4.5.2.2-1. The loading parameters, Ap and R-ratio, are defined in Figure 4.5.2-1.
Two transitions are defined for this test series. The first transition occurs when crack tip 1 reaches
comer a. The second transition occurs when crack tip 2 reaches comer B. For every test of this
series discussed in this section, cyclic loads were applied until the second transition occured.

The numbers of cycles before the first and second transitions are defined as /1 and /2,
respectively. Both of these numbers are calculated by fitting a quadratic polynomial to crack
lengths measured at the two 5000 cycle intervals just before transition and the crack length
measured at the first 5000 cycle interval following the transition. The number of cycles for which
the crack tip would be at the appropriate corner was interpolated from this polynomial.

Experimentally-observed and NASCRAC-predicted crack lengths a,, a; and a3 are plotted
versus cycles in Figures 4.5.2.2-2, 4.5.2.2-3 and 4.5.2.2-4. The definitions of crack lengths used

4-112



in these comparisons are those given in Figure 4.5.2.2-1. These definitions do not correspond
with NASCRAC™ definitions of crack length, which change throughout the test. Furthermore,
NASCRAC™ definitions of crack lengths are not applicable to some of the observed crack shapes.
This issue is addressed in greater detail in the section 4.10.1: Crack Transitioning. A photograph
of a post-second-transition crack front is shown in Figure 4.5.2.2-5.
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Figure 4.5.22-1. Geometry for Test Serles I-2-a

Table 4.5.2.2-1. Average Dimensions for Test Series I-2-a

NUMBER OF TESTS 14
DIMENSION AVERAGE VALUE UNITS

Al(D) 0254 INCHES
a2(0) 0.254 INCHES
a3(0) 0256 INCHES
bl 2.000 INCHES
b2 1.500 INCHES
b3 2.408 INCHES
b* 0.497 INCHES

Ap 1148 KIPS

R-ratio 0.217 -

I3 55,605 CYCLES
2 107,398 CYCLES
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Table 4.5.2.2-2. NASCRAC™ Input For Analysis Of Test Serles I-2-a

NASCRAC™ INPUT VALUE CORRESPONDING
TEST DIMENSION
MODEL 702 I-2-a
GEOMETRY al 0.256 a3(0)
a2 0.254 al(0)
a3 0.254 a2(0)
Wi 2.000 bl
w2 0.497 b*
W3 1.003 b2- b*
LOADING TRANSIENT 1 1000 CYCLES FATIGUE LOADS:
RANGE:EQUATIONB 13.82,-13.82 FIGURE 4.5.2-1
R-RATIO: 0.217 TABLE 45.22-1
BLOCK 1X TRANSIENT 1
MATERIAL 2219-T851 Al ALUM3 2219-T851 Al
PROPERTIES L-T, T-L 75F #104 LAB AIR
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Figure 4.5.2.2-5. Typical Crack Front Following Second Transition in Test Series I-2-a

NASCRAC™-predicted crack lengths remain in the range of observed crack lengths
throughout the entire predicted life. The range of experimentally-observed /1 for this test series is
from 39,485 cycles to 86,391 cycles. NASCRAC™-predicted /1 is 33% greater than the average
experimentally-obsevered /1.

The range of experimentally-observed /2 for this test series is from 81,193 cycles to
158,254 cycles. NASCRAC™-predicted 12 is 8% less than the average observed /2. The
difference between NASCRAC™-predicted /1 must be considered when evaluating the accuracy of
NASCRAC™-predicted I2. NASCRAC™.-crack transitioning capability will be discussed more
thoroughly in Section 4.10.

To summarize. NASCRAC™-predicted crack lengths, as defined in Figure 4.5.2.2-1, are
not continuous throughout the course of the test. The following conclusions regarding this
observation can be made:

o Itis likely that NASCRAC™-crack-growth predictions near either of the crack transitions
will be inaccurate.

+ NASCRAC™-predictions will not indicate the fatigue life that occurs while the crack is
transitioning. While, in general, this assumption is conservative, in some instances it
might be advantagous to consider this additional fatigue life.

Despite these conclusions, NASCRAC™-predicted crack lengths are in the range of
experimental observations for the duration of the fatigue life in Test Series I-2-a. Therefore, it 1s

concluded that:
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» NASCRAC™-model 702 predicts constant amplitude fatigue crack growth well for the
pre-transition crack growth in Test Series I-2-a.

» In light of the experimentally observed scatter, in some instances, the NASCRAC™
transition capability does predict overall fatigue life satisfactorily.

Crack growth behavior near the first transition, and the available fatigue life that is not
predicted by NASCRAC™ as a result of the NASCRAC™-transition algorithm are considered in
Section 4.10.1: Crack transitioning.

4523 jes I-3-a;

The objective of test series I-3-a was to validate NASCRAC™'s crack propagation through
a residual stress field capability. The tests in this series are described in greater detail in the section
on elastic plastic stress redistribution. However, two of the tests in this series were constant
amplitude fatigue crack tests and hence are discussed in this section. The two tests had
significantly different initial notch sizes, and will be discussed individually.

The geometry for this test 3
series is shown in Figure 4.5.2.3-1.
Tests in this series were not

conducted to failure and no obvious LO Ad— C)--l

transition occurred. The |_ b _| Ib
dimensions of test I-3-a/2 are given 3 |

in Table 45.2.3-1. Input for a | Lol A< =1
NASCRACT™ analysis of this test 12

is given in Table 4.5.2.3-2. b2

Experimentally-observed and CRACK CRACK INITIAL
NASCRACT™M.predicted crack TP 1 TP 2 NOTCH

length versus cycles are shown in 7
7 1 ) % CRACK

]
1

Figure 4.5.2.3-2. A photograph of
the surface is shown in Figure
4.5.2.3’3. SECTIONA-A
Figure 4.5.2.3-1. Geometry for Test Series I-3-a
Table 4.5.23-1. Dimensions for Test I-3-a/2

al

st
AN

NUMBER OF TESTS 1
DIMENSION AVERAGE VALUE UNITS
al(0) 0.018 INCHES
a2(0) 0.019 INCHES
bl 1.991 INCHES
b2 0.653 INCHES
b3 2.409 INCHES
Ap 6.258 KIPS
R-ratio 0.2237 -
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Table 4.5.2.3-2. Input for NASCRAC™ Analysis of Test 1-3-a/2

NASCRAC™ INPUT VALUE CORRESPONDING
TEST DIMENSION
MODEL 203 1-3-a/2
GEOMETRY a 0.0185 (al(0) + a2(0))2
W 1.991 bl
LOADING TRANSIENT 1 1000 CYCLES FATIGUE LOADS
RANGE: EQ. B 17.47, -17.55 FIGURE 4.5.2-1
R-RATIO 0.2237 TABLE 4.5.2.3-1
BLOCK 1 X TRANSIENT 1|
MATERIAL 2219-T851 Al ALUM3 2219-T851 Al
PROPERTIES L-T, T-L 75F #104 LAB AIR
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0.8
[ ]
[ ]
0.7
* &
o o
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e
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o kA4 o F2-AH0 m [2-AN5
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Figure 4.523-2. Experimentally-Observed and NASCRAC ™ Predicted Crack Length Versus Cycles for Test I-3-a/2
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Figure 4.5.2.3-3. Photograph of Crack Surface for
Test Series 1-3-a

NASCRAC™-predicted crack
lengths match the experimentally-observed
crack lengths well. However, some of the
fatigue life of test 1-3-a/2 was spent in the
crack initiation phase. It is unknown how
much of the fatigue life of this test is spent
in the crack intiation phase. It is possible
that a significant number of cycles are spent
intiating the crack from the notch. These
cycles is not modeled by NASCRAC™, as
the NASCRAC™ analysis assumes a
sharp, intial crack. Also, for much of the
fatigue life of this test the crack length falls
into what i1s known as the small crack
regime. Small cracks. less than about
0.020 inches beyond the initial notch, have
been observed to grow faster than larger
cracks under the same applied stress
intensity factors [5]. Furthermore, the
verification work described in subsection
4.5.1 indicates differences in the crack
growth models used in NASCRAC™ and
FLAGRO. The implementation of m in
the NASCRAC™ crack growth model
negates some of the effect of R-ratio on
fatigue crack growth. The R-ratio can be

particularly important at low values of AK. With these possible sources of error, it is impossible
to conclude whether these factors are insignificant, or cancelling each other out.

Test 1-3-2/6 was also a constant amplitude fatigue crack growth test. The dimensions of
test 1-3-a/6 are given in Table 4.5.2.3-3. Fatigue loading of this test continued for 2,600,000 cycles
without fatigue crack intiation occurring. Two NASCRAC™ analyses of this test were performed.
The inputs for these analyses are given in Tables 4.5.2.3-4 and 4.5.2.3-5. The only difference
between these two analyses was the initial crack size varied by 0.0005 inches, less than the
accuracy of the intial notch measurements. NASCRAC™ analysis | of test 1-3-a/6 calculates
stress intensity factor below the threshold stress intensity factor, and thus an infinite fatigue life.
NASCRAC™ analysis 2 of test 1-3-a/6 predicts a fatigue life of 375,000 cycles.
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Table 4.5.2.3-3. Dimesions for Test I-3-2/6

NUMBER OF TESTS 1

DIMENSION AVERAGE VALUE UNITS
al(0) 0.003 INCHES
a2(0) 0.003 INCHES
b1 2.000 INCHES
b2 0.652 INCHES
b3 2407 INCHES

Ap 6.394 KIPS

R-RATIO 0.2048

Table 4.5.2.34. Input for NASCRAC™ Analysis 1 of Test I-3-a/6

NASCRAC™ INPUT VALUE CORRESPONDING
TEST DIMENSION
MODEL 208 1-3-a/6
GEOMETRY a 0.003 (al(0) + a2(0))/2
W 2.000 bl
LOADING TRANSIENT 1 1000 cycles FATIGUE LOADS
RANGE: EQUATION B 17.70, -17.70 FIGURE 4.5.2-1
R-RATIO 0.2048 TABLE 4.5.23-2
Block 1X TRANSIENT 1
MATERIAL 2219-T851 Al ALUM3 2219-T851 Al
PROPERTIES L-T, T-L 75F #104 LAB AIR
Table 4.5.23-5 Input for NASCRAC™ Analysis 2 of Test I-3-a/6
NASCRAC™ [nput Value Corresponding
Test Dimension
MODEL 208 1-3-2/6
GEOMETRY a 0.0035 (al(0) + a2(0))/2
A\ 2.000 bl
LOADING TRANSIENT 1 1000 CYCLES FATIGUE LOADS
RANGE: EQUATION B 17.70, -17.70 FIGURE 4.5.2-1
R-Ratio 0.2048 TABLE 4523-2
Block 1X TRANSIENT 1
MATERIAL 2219-T851 Al ALUMS3 2219-T851 Al
PROPERTIES L-T, T-L 75F #104 LAB AIR

From the discussion of Section 4.5.1 and the observations regarding test I-3-a/2 the

following conclusions may be made:

» There is good agreement between NASCRAC™-predicted and experimentally-observed
crack lengths in the two tests. However, three possible sources of error are present in these
tests. The NASCRACT™ crack growth model does not calculate m properly. This is likely
to cause problems in predicted crack growth rates for low AK. Small crack effects are
likely to be present during most of the fatigue life. Crack intiation is likely to be a
significant portion of the fatigue life. Itis possible that these effects are all significant, but

compensate for each other.
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Based on a comparison of NASCRAC™ analyses 1 and 2 of test I-3-a/6 it is concluded
that:

» NASCRAC™-predicted fatigue life can be extremely sensitive to small changes in initial
crack sizes when the intial crack length is small.

4.5.24 i -a: i i ] f

Test series II1-a was designed to validate NASCRAC™'s proof test logic. However, stage
1 of each test in this series consisted of constant amplitude fatigue crack growth. Results from this
stage will be discussed in this section. The geometry for test series III-a is shown in Figure
4.5.2.4-1. The average dimensions for this test series are given in Table 4.5.2.4-1. Input for a
NASCRAC™.analysis of stage 1 of this test series is given in Table 4.5.2.4-2. The first stage of
this test series consisted 120,000 fatigue cycles in all but two of the tests. The remaining two tests
had 90,000 cycles and 100,000 cycles applied in the first stage.

Experimentally-observed and NASCRAC™-predicted crack lengths versus cycles are
shown in Figure 4.5.2.4-2 and 4.5.2.4-3. A typical crack front is shown in Figure 4.5.2.4-4. The
crack front that existed after 20,000 cycles is indicated by the darker, semi-elliptical shape on the
crack face.

Figure 4.52.4-1. Geometry for Test Series [II-a

Table 4.52.4-2. Average Dimenslons for Test Series ITl-a

NUMBER OF TESTS 9
DIMENSION AVERAGE VALUE UNITS
a1(0) 025 INCHES
a2(0) 025 INCHES
bl 3.001 INCHES
b2 3.001 INCHES
b3 6.034 INCHES

Ap 20.97 KIPS

R-RATIO 0.2319
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Table 4.5.2.4-2 Input for NASCRACT™ Analysis of Stage 1 for Test Series ITI

NASCRAC™ INPUT VALUE CORRESPONDING
TEST DIMENSION
MODEL 605 1-2-a
GEOMETRY al 0.250 al(0)
a2 0.250 a2(0)
w1 3.001 b1
w2 3.001 b2
LOADING TRANSIENT 1 1000 CYCLES FATIGUE LOADS:
RANGE: EQ. B 14.045, -9.360 FIGURE 4.5.2-1
R-RATIO: 0.2319 TABLE 4.5.2.4-1
BLOCK 1X TRANSIENT 1
MATERIAL 2219-T851 Al ALUM3 2219-T851 Al
PROPERTIES L-T, T-L 75F #104 LAB AIR
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Figure 4.5.2.4-2. Experimentally-Observed and NASCRAC ™ .Predicted
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Figure 4.5.2.4-3. Experimentally-Observed and NASCRAC ™ .Predicted Crack Length a, Versus Cycles for Stage
1 of Test Series IIl-a
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Figure 4.5.2.4-4. Crack Front from Test Series [11-a

The NASCRAC™-.predicted crack lengths remain in the range of experimentally-
observed crack lengths for the duration of Stage | of this test series. From this observation, the
following conclusion can be made:

« NASCRAC™ model 605 predicts fatigue crack growth well for Stage | of test series
[11-a.

4.5.2.5 Test I-2-a/5: Non Planar Fatigue Crack Growth

A fundamental assumption in any NASCRAC™ analysis is that cracks remain planar.
The specimen geometry and loading in all of the previously described tests was chosen so that this
assumption was true throughout the entire test. One test was performed in which this assumption
was relaxed. The geometry for this test, 1-2-a/5, is shown in Figure 4.5.2.4-5. This test was
designed to test the limits of the NASCRAC™-planar crack assumption. Inputs for the
NASCRAC™ analysis of this test are given in Table 4.5.2.5-2. Experimentally-observed and
NASCRAC™-predicted crack lengths ai, a2 and a3, as defined by Figure 4.5.2.5-1, are shown in
Figures 4.5.2.5-2 through 4.5.2.5-4. Two views of the fatigue crack surface are noted in Figure
4.5.2.5-1 Photographs from these two views are shown in Figures 4.5.2.5-5 and 4.5.2.5-6.

ORIGINAL PAGE IS
OF POOR QUALITY
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Figure 4.5.2.5-1. Geometry for Test I-2-a/5

Table 4.5.2.5-1 Average dimensions for test 1-2-a/5

NUMBER OF TESTS 1
DIMENSION VALUE UNITS
al(0) 0.184 INCHES
a2(0) 0.184 INCHES
a3(0) 0.251 INCHES
b1 2.000 INCHES
b2 1.500 INCHES
b3 2412 INCHES
b* 0.508 INCHES

Ap 11.54 KIPS

R-ratio 0.214 -
3 106,812 CYCLES
2 171,006 CYCLES
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Table 4.52.5-2. NASCRAC™ Input For Analysis Of Test I-2-a/5

NASCRACT™ INPUT VALUE CORRESPONDING
TEST DIMENSION
MODEL 702 I-2-a
GEOMETRY al 0.251 a3(0)
a2 0.184 al(0)
a3 0.184 a2(0)
w1 2.000 bl
w2 0.508 b*
w3 0.992 b2- b*
LOADING TRANSIENT 1 1000 CYCLES FATIGUE LOADS:
RANGE:EQ. B 13.92,-13.92 FIGURE 4.5.2-1
R-RATIO: 0.214 TABLE 4.5.2.5-1
BLOCK 1 X TRANSIENT 1
MATERIAL 2219-T851 Al ALUM3 2219-T851 Al
PROPERTIES L-T, T-L 75F #104 LAB AIR
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Figure 45.2.5-2. Experimentally-Observed and NASCRAC ™ .Predicted Crack Length a1 Versus Cycles
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a/S Fatigue Crack Surface

2

5. View 1 of Test ]

Figure 4.5.2.5-

Figure 4.5.2.5-6. View 2 of test 1-2-a/5 Fatigue Crack Surface
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NASCRAC™ requires the observed non-planar crack to be modeled as as a planar crack.
The initial crack input to NASCRAC™ was the projection of the actual crack onto the plane section
A-A shown in Figure 4.5.2.5-1. The projected crack is not a semi-circle. Rather, it is a semi-
ellipse with the horizontal axis smaller than the vertical axis. Using a planar crack the same size as
the initial notch for NASCRAC™ as an input results in even more conservative predictions.

Two boundary element analyses have been performed for test I-2-a/5. The first analysis
was of the initial notch. In the second analysis, the crack was propagated a small increment, as
predicted by FRANC3D calculations, from the initial analysis. Two views of the crack modeled in
this analysis are shown in Figure 4.5.2.5-7.

By design, NASCRACT™ calculates only Mode I SIF. Figure 4.5.2.5-8 shows
NASCRAC™ calculated SIF’s compared to FRANC3D calculated SIF’s for the initial notch.
The initial NASCRAC™ calculated K] values are roughly twice as large as the FRANC3D
calculated K] values. The magnitude of the largest FRANC3D calculated KJj values is the same
as the FRANC3D calculated K]. The largest K]J] value occurs at the top of the crack and is
approximately half of the FRANC3D calculated K].

After a small crack-propagation increment, the FRANC3D calculated SIF’s change much
more than does the NASCRAC™.calculated SIF’s. These values are shown in Figure 4.5.2.5-9.
FRANC3D calculated KJj values reduce to nearly 0. FRANC3D calculated K{JJ increases at the
top of the crack by roughly 25%. FRANC3D calculated K] increases by roughly 30% at the top
and 75% at the comners of the crack. NASCRAC™ calculated K] increases by only 2%.

Although K] reduces to zero
as the crack propagates, Mode II is
influential in the direction of crack
propagation. It is clear from the
photographs of the crack front in
Figures 4.5.2.5-5 and 4.5.2.5-6 that
Mode III is influential in fatigue crack
propagation, particularly near the top

FIRST
PROPOGATION

INCREMENT\

~—— INITIAL NOTCH

[T

TP 1 TIP2
A) END VIEW OF BEAM

TP of the initial notch. As the test
progresses, the 45° twist in the initial
notch becomes less prominent in the

FIRST PROPAGATION crack front. Therefore, as the crack

INCREMENT

propagates, the importance of K][]

compared to K] will diminish.
INITIAL NOTCH

B) TOP VIEW OF BEAM ne 2

Figure 4.5.2.4-7. Initial Notch and First Propagation Increment for
FRANC Analysis
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Figure 4.5.2.5-9. FRANC3D- and NASCRAC™ .Calculated SIF for Small Increment from Initial Notch

In this test, the crack grows so that the crack approaches being perpendicular to the
principle direction of stresses. When the true crack is modeled as a planar projection of the true
crack, NASCRAC™ predicts pre-transition crack growth within anticipated scatter of experimental
observations. The following conclusions are drawn regarding this observation:

e In this case, NASCRAC™’s planar crack assumption leads to conservative life prediction.
This observation, however, cannot be generalized without more investigation. In some
circumstances, particularly in a case where the principle stresses in a body do not remain in
the same orientation, the NASCRAC™ planar crack assumption may become
unconservative.
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4.6

The tolerable crack size
capability in NASCRACTM
determines the initial crack length
for a specified configuration given a
required number of load cycles.
The tolerable crack size verification
and validation process was divided
into two phases as shown in Figure
4.6-1. Phase I of the effort was an
algorithm verification phase.
NASCRACTM predictions of
tolerable crack size were compared
to fatigue life capability to fatigue
crack growth calculations from an
in-house FORTRAN code using
the compact tension configuration.
The NASCRACTM predicted
tolerable crack length was used as
the initial crack length and
propagated forward to failure in the
FORTRAN code.
NASA/FLAGRO was also used as
a tool for the algorithm verification
by comparing its predicted life
calculations to NASCRACTMg
predicted tolerable crack size.

Phase II of the tolerable crack V/V verification process evaluated more complex
configurations: configuration 208, a through crack from a hole in a finite plate, and configuration
404, an edge-crack in a solid circular bar. In this phase, NASCRACTM's tolerable crack
predictions were compared to FLAGRO's crack growth calculations. The NASCRACTM
predicted tolerable crack length was used as the initial crack length and propagated forward to

failure in FLAGRO.

Observed differences in the results from Phase 11 led to four additional comparisons of the
208 and 404 configurations. These comparisons provided data which accounted for the

differences.

CALCULATION OF TOLERABLE CRACK SIZE

Compare NASCRAC ™ tolerabic
crack results 1o a FORTRAN code
fora compact tension specimen.

Y

Establish FLAGRO Life resuls
versus NASCRACTM and he
FORTRAN code.

Compare NASCRAC™ tole rable
crack resulis to FLAGRO Ef ¢ results
for complex configurations.

|

[ DiscREPANCY ANALYSS ]

\

'

Y

Campare NASCRACTM
and GROKX vsa

solutions

ompare the terminal crack
lengths predicted by
NASCRAC™ and FLAGRO

Compare the crack growth
rates of NASCRAC™M
and FLAGRO.

4

Compare teminal cycl numbers and terminal

crack lengths from NASCRACTM tolerable

option, FLAGROlife option, and NASCRACT™

lif e option for 1 kip and 10 kip load cases.

'

{  concLusions J
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4.6.1 VERIFICATION OF THE NASCRACTM TOLERABLE CRACK
ALGORITHM

Preliminary verification of the tolerable crack size capability in NASCRACTM was
accomplished using comparisons to an in-house FORTRAN code. These comparisons were
based on a compact tension specimen (Figure 4.6.1-1) and the Paris crack growth equation. The
NASCRACT™ predicted tolerable crack size was used as an initial crack length in the FOTRAN
code and propagated to failure. Two NASCRACTM integration methods, cycle-by-cycle and
piecewise linear, were compared to cycle-by-cycle integration in the FORTRAN code. The
compartive study consisted of three different values of the cycles per block parameter and the three
different values of the cycles to failure parameter. The comparative results are tabulated in Table
46.1-1.

P The results in Table 4.6.1-1 show
] that NASCRACTM and the FORTRAN
code were in good agreement on the

E‘} , predicted fatigue life (cycles to failure) and
%////% 3- the final crack length as. This table does not
7 v . . L

| include plccewmc.', lmear. resul‘ts from the
DR FOTRAN code since this option was not
available. The calculated tolerable a
{ column lists the predicted tolerable crack
size from NASCRACTM, This crack size
was the initial crack length in the
p FORTRAN fatigue life calculation. Cases
Figure 4.6.1-1. Configuration 101 Geometry Specificatons for 2 and 4 are NASCRAC™ runs identical to
Tolerable Crack Studies cases 1 and 3, respectively, except that
integration was done by the piecewise linear method, which is the default method in
NASCRACTM, A comparison of cases 3 and 4 shows that minor variations in the predicted
cycles to failure are possible for the different integration procedures in NASCRACTM but that the
calculated tolerable crack size is identical for the two integration procedures. In case 7, the
observed difference between NASCRACTM and the FORTRAN code is due to the discretization
of the results controlled by the cycles per block parameter. For cases 1 and 2, where just a few
cycles to failure are required (< 1000), the standard procedure seems to overshoot the tolerable
initial crack length but the cycle-by-cycle technique easily predicts the tolerable crack length. The

over estimated length in case 2 did indicate an initial K greater than Kj¢

+
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Table 4.6.1-1. Comparison of Tolerable Crack Results for Configuration 101

Case | Integration | Cycles/ | Requested | Calculated Cycles to "Cycles to af af
method block cycles to tolerable a failure failure (NASCRACTM) | (FORTRAN)
failure | (NASCRAT™) | (NascrRACT™) | (FORTRAN)
1 | cycle-by- 1 1000 7.103 1000 1000 7.201 7.201
cycle
2 piecewise 1 1000 7.529 0 n/a 7.529 n/a
3 cycle-by- 100 100000 5.084 104500 104500 7.198 7.200
cycle
4 piecewise 100 100000 5.084 98700 n/a 7.443 n/a
5 piecewise 1 100000 5.085 98526 n/a 7.446 n/a
6 piecewise 25000 2.5(10%) n/a n/a n/a n/a n/a
7 cycle-by- 25000 100000 4978 100000 125,000 6.292 7.201
cycle

Case 6 in Table 4.6.11 revealed a flaw in the NASCRAC™ algorithm. In this case a large

number of cycles to failure was requested. Figure 4.6.1-2 lists an abridged output file from this
case. NASCRACTM attempts to reduce the initial crack size and iterate as expected. However,

after four iterations the program began to oscillate between the crack length estimtaes of the third
and fourth iteration. This oscillation was caused by the threshold value of AK. Due to the number

of cycles to failure requested, NASCRACTM had to search for a relatively small tolerable crack
size. At a certain point the initial estimate of crack size became too small to cause crack growth,
i.e., AK < AKy,. Thus, NASCRACTM doubled the estimate of initial crack size, which was the

same estimate as the previous iteration. This doubling and halving of the crack length estimate led

to the observed oscillatory behavior.
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PROBLEM TITLE : Case 6 -- Standard procedure

TYPE OF ANALYSIS
> Initial (Tolerable) Crack Size Calculation

Crack Growth Analysis Performed by
-> Standard Procedure

Load Interactions Model Used -
> No Load Interactions

Crack Driving force - K or Delia K
Max. Fractional Increment of Crack Size between two Steps =  0.1000
Accuracy of (IF) Area Integration (1,2, 0R3) =2
Accuracy of Singularity Integration (1 to 5) =2
Number of Life Cycles (BLOCKS) for which Initial
Crack Size is to be Calculated =  1.00000E+05

-> Compact Tension Specimen 101
Initial Crack Dimension(1) = 3.00000
BODY WIDTHS(1) = 10.00000
BODY WIDTHS(2) = 2.50000

MATERIAL PROPERTIES DATA
MATERIAL - 2219-T851 AL, L-T & T-L, 75F

Paris Equation : C= 1.0700E-08
m= 2.897
DELTAK THRESHOLD= 2.500

TOTAL NUMBER OF TRANSIENTS ENTERED : 1
TRANSIENT NUMBER = 1
TRANSIENT TITLE = Constant amplitude load
TRANSIENT TYPE = CYCL
NUMBER OF CYCLES = 2.5000E+04
CRACK GROWTH LAW = PARIS EQUATION

MAXIMUM STRESS DEFINED BY EQUATION TYPE : 6 WHICH IS ...
STRESS DEFINED BY PIN LOAD, PIN LOAD (FORCE) = 1.0000E+01
MULTIPLICATION FACTOR =  1.00000E+00

R-RATIO = 0.2000

Loading Block consists of the following transients -

Transient Number 1 Repeated 1 Time(s).

Figure 4.6.1-2. Typical Tolerable Crack Size Output File
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DETAILS OF ITERATIONS PERFORMED

Iteration Number = 1- -
*»* For Transient # 1 & for Crack DOF 1 Kmax is exceeding Kic **
Crack Degrees of Freedom 1 : A1 = 3.00000
Number of Cycles = 3.014709E+01
** WARNING: Specified initial crack size(s) are too big.
All the crack sizes are reduced by 50 %

Iteration Number = 1 - -
*** For Transient # 1 & for Crack DOF 1 Kmax is exceeding Kic **
Crack Degrees of Freedom 1 : A1 = 1.50000
Number of Cycles = 1.035336E+02
** WARNING: Specified initial crack size(s) are too big.
All the crack sizes are reduced by 50 %

Iteration Number= 1 - -
*** For Transient # 1 & for Crack DOF 1 Kmax is exceeding Kic **
Crack Degrees of Freedom 1 : A1 = 0.75000
Number of Cycles = 2.066827E+02
** WARNING: Specified initial crack size(s) are 100 big.
All the crack sizes are reduced by 50 %

Iteration Number= 1 - -
*** For Transient # 1 & for Crack DOF 1 Kmax is exceeding Kic **
Crack Degrees of Freedom 1 : A1 = 0.37500
Number of Cycles = 6.961500E+24
** WARNING: Specified initial crack size(s) are too small.
All the crack sizes are increased by 100 %

Iteration Number= 1 - -
*** For Transient # 1 & for Crack DOF 1 Kmax is exceeding Kic **
Crack Degrees of Freedom 1 : A1 = 0.75000
Number of Cycles = 2.066827E+02
** WARNING: Specified initial crack size(s) are too big.
All the crack sizes are reduced by 50 %

Iteration Number= 1 - -
*** For Transient # 1 & for Crack DOF 1 Kmax is exceeding Kic **
Crack Degrees of Freedom 1 : Al = (.37500
Number of Cycles = 6.961500E+24
** WARNING: Specified initial crack size(s) are too small.
All the crack sizes are increased by 100 %

Iteration Number = 1 - -
*** For Transient # 1 & for Crack DOF 1 Kmax is exceeding Kic **
Crack Degrees of Freedom 1 : A1 = 0.75000
Number of Cycles = 2.066827E+02
** WARNING: Specified initial crack size(s) are too big.
All the crack sizes are reduced by 50 %

Figure 4.6.1-2. (Continued)
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The cases shown in Table 4.6.1-2 provided checks of the fatigue life capabilities of the
FORTRAN code and FLAGRO. All three codes were in good agreement. The differences
between NASCRACTM and FLAGRO in cases 4 and 5 can be traced to the modified Forman
discrepancies discussed in Section 4.5.1.

Table 4.6.1-2. Life Calculation Comparison for Tolerable Crack V/V Tools

CASE CODE CRACK | REQUESTED | INITIAL a | CYCLES | FINAL a
GROWTH | CYCLES TO TO
LAW FAILURE FAILURE
1 FORTRAN PARIS 100000 7.103 373,000 7.174
2 NASCRACT™| PARIS 100000 7.103 362,000 7.200
3 FLAGRO PARIS 100000 7.103 371,000 7.174
4 NASCRACTM MOD. 100000 7.103 68,000 7.203
FORMAN
5 FLAGRO MOD. 100000 7.103 56,000 7.170
FORMAN

Note: The NASCRAC ™ results were adjusted to compensate for the error in configuration 101.

4.6.2 EXAMPLE V/V CASES FOR NASCRACTM’S TOLERABLE CRACK
CAPABILITY

The second stage of the tolerable crack V/V process was to investigate configuration 208, a
through crack from a hole in a finite plate, and configuration 404, an edge-crack in a solid circular
bar. This was completed by executing NASCRACTM tolerable crack size analysis for 100,000
cycles to failure. The NASCRACTM predicted tolerable crack length was used as the initial crack
length in FLAGRO and propagated forward to failure. Two geometric cases with four different
load spectrums were evaluated for each of the two configurations. The modified Forman equation
with appropriate K¢ values was used to model the crack growth. The geometric cases for
configuration 208 and 404 are shown in Figures 4.6.2-1 and 4.6.2-2, respectively. The results of
the evaluations are shown in Figures 4.6.2-3 through 4.6.2-6.
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Figure 4.6.2-1. Configuration 208 Geometry Specifications for Tolerable Crack Studies
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Figure 4.6.2-2. Conflguration 404 Geometry Specifications for Tolerable Crack Studies
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Figure 4.62-3. Comparison of Terminal Crack Length for Configuration 208
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Figure 4.6.2-4. Comparison of Terminal Cycles for Configuration 208
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Figure 4.62-5. Comparison of Terminal Crack Length for Configuration 404
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Figure 4.6.2-6. Comparison of Terminal Cycles for Configuration 404

Figures 4.6.2-3 and 4.6.2-5 show the crack lengths at failure from NASCRACTM and
FLAGRO are in good agreement for the two configurations and the four different loadings. The
results shown in Figures 4.6.2-4 and 4.6.2-6 also show reasonable agreement with the exception
of the 1 kip loading cases. The figures show a trend of FLAGRO predicting a higher number of
terminal cycles compared to NASCRACTM, In the 1 kip loading cases, the results show that
FLAGRO predicts a longer life than NASCRACTM by a factor of 5 for configuration 208 and by
a factor of 1.5 for configuration 404. These results for a 1 kip load reveal a significant discrepancy
in NASCRAC™,

In order to understand why FLAGRO consistently predicted a longer life relative to
NASCRACTM a comparison of K vs a for each case was performed to verify that the codes
calculated similar stress intensity solutions. The results of the configuration 208 cases, shown in
Table 4.6.2-1, show good agreement between the K values in NASCRACTM and FLAGRO. The
configuration 404 K results, shown in Table 4.6.2-2, were identical for the two codes.

Table 4.6.2-1. Comparative Stress Intensity Factors for Configuration 208

CONFIGURATION 208 CASE 1 CONFIGURATION 208 CASE 2
a NASCRAC TMK FLAGRO K a NASCRAC K™ FLAGRO K
1.0 1.840 1.838 1.0 1.862 1.860
20 2.229 2.227 2.0 2.309 2.308
40 2.938 2.936 45 4.077 4075
8.625 5.243 5.241 - - -




Table 4.6.2-2. Comparative Stress Intensity Factors for Configuration 404

CONFIGURATION 404 CASE 1 CONFIGURATION 404 CASE 2
a NASCRAC ™MK FLAGRO K a NASCRAC ™ K FLAGRO K
0.5 0.878 0.878 1.0 1.241 1.241
1.0 1.419 1419 2.0 2.006 2.006
1.5 2.104 2.104 3.0 2976 2.976
20 3.095 3.095 4.0 43717 4377
2.5 4.640 4.640 5.0 6.561 6.561
3.0 7.270 7.270 6.0 10.281 10.281

The K vs a analyses led to two further comparisons: crack growth rate versus number of
cycles and crack length versus number of cycles. These two comparisons, shown in Figure 4.6.2-
7, used configuration 208 with corrected K¢ and m values in the NASCRACTM execution as per

Section 4.5.1. The fatigue life option in each code was employed to propagate a 2.5" crack to
failure.

DA/DN VS CYCLES CRACK LENGTH VS CYCLES
6e-5 '
Se-5F NASCRAC™ . E NASCRACTM
" |_=====_FLAGRO 19 ====_ FLAGRO
z 4e-5[ 7 5
2 ses] 1 &
3 3e-5 [ - 2
2e-5F 1
L { QO
le-5[ « ]
. 1
Oe+0 e e v e e e . " s .
Oct0 246 4de+6  6e+6  8e+b Oc+0 246 4de+6 Ge+6 8e+6  le+7
CYCLES CYCLES

Figure 4.6.2-7. Comparison of NASCRAC ™ and FLAGRO Fatigue Life for Configuration 208

In the fatigue life calculations in Figure 4.6.2-7, FLAGRO predicts a slightly longer life
and a similar final crack length compared to NASCRACTM, The observed differences can be
traced to the rate of crack growth rate, da/dN. For both codes the da/dN is approximately 7.5 x 106
cycles. At this point, NASCRACTM and FLAGRO experience an increase in slope, but
NASCRACTM's change in slope is much larger than FLAGRO's. This leads to the longer life in
FLAGRO for an equivalent initial crack length. Thus, the K vs a and da/dN data lead to the
conclusion that the observed differences between NASCRACTM's tolerable crack prediction and
FLAGRO's life prediction is caused by minor differences in the modified Forman crack growth
model employed in each code. The configuration 208 1 kip load case shown in Figures 4.6.2-3
through 4.6.2-6 is an exception to this conclusion.
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Figure 4.6.2-4 clearly shows the discrepancy in the 1 kip load case. Two additional cases
were used to investigate this discrepancy. In both cases , NASCRACTM's tolerable crack size
analysis was performed using a critical K value of 30.1 ksiVin, 100,000 cycles to failure, and
configuration 208 with the geometry given in Figure 4.6.2-1, case 1. The NASCRACTM
predicted tolerable crack length was used as the initial crack length and propagated forward to
failure in FLAGRO and NASCRAC™ using the fatigue life options. The two cases differed only
in the applied load: case A used a load of 1 kip and case B used a load of 10 kips. The results of
the investigation are shown in Figure 4.6.2-8.
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Figure 4.6.2-8. Comparison of NASCRAC" ™ Tolerable Crack size, FLAGRO's Fatigue Life Calculation, and
NASCRAC Fatigue Life Calculation for Configuration 208 and Different Load Cases.

The results in Figure 4.6.2-8 show a discrepancy in NASCRACTM's tolerable crack size
prediction of the terminal cycle for the 1 kip load case but good agreement of the predicted crack
lengths for the three different analyses in both load cases. This discrepancy is probably due to the
invalidity of the tolerable crack size when the crack length exceeds 99% of the body width.
Analysts should disregard tolerable crack predictions if NASCRACTM issues a warning that the
crack length exceeds 99% of the body width.

To summarize the V/V results for NASCRACTM's tolerable crack capability, the results
show that the capability is functional. Predicted crack lengths are reasonable for the crack growth
equations employed. The documentation should emphasize that the most efficient way to run this
capability is with the standard procedure (piecewise linear) crack growth integration technique
where the number of cycles per block is set to one. This set-up is demonstrated in Examples 6-9
and 6-10 of the NASCRACTM User's Manual. This recommendation should be caveated when a
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small number of cycles to failure are requested. In this case it is more accurate to use cycle-by-
cycle integration. Also the user should be aware of the oscillatory effect described in Section 4.6.1.
Finally and most importantly, NASCRACTM tolerable crack results should pot be used
whenever NASCRACTM issues a warning in the output that the crack length exceeded
99% of the body width, i.e., when geometry instead of K. is the reason for failure.
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4.7 PROOFTEST LOGIC
Verification and validation testing of NASCRAC™’s Proof Test Logic capability is

discussed in this section. The accurate prediction of remaining fatigue life following a proof load
requires successful performance of two tasks:

1) Predict the largest crack of a given aspect ratio and location that can survive a given proof
load.

2) Calculate the remaining fatigue life for the largest crack calculated in (1).

NASCRAC™ capability for these two tasks, and Proof Test Logic in whole, have been
tested for validity primarily by laboratory tests.

4.7.1 PREDICTION OF LARGEST SURVIVING CRACK

Stage 2 of test 4@
series IIl-a was a near- 0

failure proofload, “—’l P
designed to validate :
NASCRAC™’s [argest I"‘O e = O‘—I

surviving crack b3 b1
calculation. The I‘—’I | I

geometry for these tests is A
shown in Figure 4.7.1-1. .

Parameters that describe » 22" >
the load history for these

tests are defined in Figure » b2 >

4.7.1-2. The proofload in CRACK

NTIAL NOTCH

stage 2 was applied in mP1
either a three point bend ch
or four point bend %
configuratipon. The / oK
average dimensions for

this test series are given in j

table 4.7.1-1. Two

average values of b3 for SECTIONA-A

the proofloads are given. Figure 4.7.1-1. Geometry for Test Series IlI-a

One represents the set of specimens loaded with the three point bend configuration, one
represents the set of specimens loaded with the four point bend configuration. The average value
of b3 for stage 3 is also given. The definition of b3 from Figure 4.7.1-1 is applicable to all three
cases. In this section, the magnitude of the proofload is described by the extreme fiber bending
stress, as calculated by linear elastic beam theory for an uncracked beam.
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Figure 4.7.1-2 . Definitions of Load History for Stages 2 and 3 in Test Series IIl1-a

Table 4.7.1-1. Average Dimensions for Test Serles ITI-a

NUMBER OF TESTS 9
DIMENSION AVERAGE VALUE UNITS
al(STAGE 2) 0.795 INCHES
a2(STAGE 2) 1.160 INCHES

bl 3.001 INCHES
b2 3.001 INCHES
b3proof
(3 pt. CONFIG.) 6.082 INCHES
b3proof
(4 pt. CONFIG.) 10.026 INCHES
b3stage3 6.034 INCHES
Ap3 2097 KIPS
R-RATlOsmEe’_; 0.2294

The size and shape of the cracks in stage 2 varied. Ellipses connecting the nine crack tips
experimentally-observed at the beginning of stage 2 are shown in Figure 4.7-3. Crack length a;
ranged from 0.558 to 1.150 inches. Crack length a; ranged from 0.782 to 1.906 inches. Figure

4.7.1-4 shows the observed crack length a; as a function of observed crack length a;.
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TIP 1

TIP2
Figure 4.7.1-3. Interpolated-Observed-Crack Shapes at Beginning of Stage 2 in Test Series III-a
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Figure 4.7.1-4. Experimentally-Observed Crack Lengths at Beginning of Stage 2

NASCRAC™ proof test analyses were performed for proof loads ranging from 22 to 55
ksi for the extreme fiber bending stress. The input for these analyses is given in Table 4.7.1-2.
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The aspect ratio was chosen by the straight line through the origin that best fit the
experimentally-observed crack lengths shown in Figure 4.7.1-4. As described in Section 4.8,
there was reason to expect that the cracks encountered at the end of Stage 1 would be dominated
by plane strain behavior. Therefore, the K-R curve used for these analyses was a horizontal line
from Kc = 30ksiVin. The proofload applied in these analyses was varied. The NASCRAC™-
predicted largest surviving and experimentally-observed cracks are plotted versus applied
proofload in Figure 4.7.1-5. The NASCRAC™-predicted and experimentally-observed
remaining life are described in Section 4.7.3.

Table 4.7.1-2. Input for NASCRAC™ Proof Test Analyses

NASCRAC™ INPUT VALUE CORRESPONDING TEST
DIMENSION
MODEL 605 TEST SERIES Ill-a
GEOMETRY ASPECT RATIO 1.499 a2/ al
W1 3.001 bl
w2 3.001 b2
LOADING TRANSIENT 1 1 cycle PROOF LOAD
MAX: EQ.B VARIED FIGURE 4.7.1-2
R RATIO: 0
TRANSIENT 2 5000 cycles FATIGUE LOADS
RANGE: EQ.B 14.05, -9.37 FIGURE 4.7.1-2
R-RATIO: 0.2294 TABLE4.7.1-1
BLOCK 1 X TRANSIENT 1
TRANSIENT 2
REPEATED TO FAILURE
MATERIAL 2219-T851 Al ALUM3 2219-T851 Al
PROPERTIES LT&T-L #104 lab air
K-R CURVE Kc =30 ksi
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Figure 4.7.1-5. Experimentally-Observed Cracks and NASCRAC™-Calculated Largest Cracks Surviving Proof Loads

The yield stress of the material is approximately 53 ksi. Therefore, LEFM is not
applicable to the proofloads with the extreme fiber bending stress in the range of 48 to 56 ksi.
However, the proofloads where the extreme fiber bending stress is approximately 34 ksi are still
in the LEFM range. There are two experimentally-observed cracks that survived proofloads near
34 ksi. Both of these cracks were larger than the NASCRAC™-predicted largest crack for this
proofload. Therefore, it is concluded that for this configuration, [NASCRAC™ can under-
predict the size of the largest surviving crack following a proofload.]

4.7.2 REMAINING LIFE CALCULATION

The second part of proof test logic evaluation was the testing of the remaining life
prediction following the proofload. To perform an unbiased test of remaining life calculation, all
NASCRAC™ analyses in this subsection used experimentally-observed crack sizes for input.

Stage 1 of this series was fatigue crack propagation from an initial notch. The purpose of

stage 1 was twofold: to validate NASCRAC™ fatigue crack propagation for model 605, and to
create a series of fatigue cracks of different sizes with realistic aspect ratios.
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The results of stage 1 are described in Section 4.5.2.4. The main conclusion from this
section is: NASCRAC™ model 605 predicts fatigue crack growth well for stage 1 of test
series I1I-a.

This result gives an indication that both the NASCRAC™ stress intensity factor solution
and crack growth model for 2219-T851 aluminum were appropriate for this test. Therefore, any
difference (beyond the anticipated experimental scatter) between NASCRAC™.-predicted and
experimentally-observed fatigue crack growth is considered to be the result of retardation due to
the proofload.

Table 4.7.2-1 shows the experimentally-observed retardation, v1, as defined in Section
4.11, in stage 3 of this test series. Retardation was calculated, and more thoroughly investigated
in Section 4.11. Tests III-a/4 and I1I-a/7 did not survive the proofload. Therefore, e, is zero for

these tests. Due to experimental error, the retardation, v1, was not available for tests ITI-a/1, I1I-
a/2 and III-a/8.

Table 4.7.2-1. Experimentally-Observed Retardation and Remaining Life in Stage 3 of Test Series III-a

TEST Irem RETARDATION
(CYCLES) (CYCLES) (% of frem)

1-a/1 114,152 n. a. --
1-a/2 48478 n. a. --
111-a/3 386,245 200,300 52
III-a/4 0 0 --
I11-a/5 385,124 155,952 40
I11-a/6 348,011 145,900 42
-a/? 0 0

111-a/8 515,458 n. a. --
10-a/9 551,728 390,375 1

Retardation following the proofload accounts for a significant portion of the remaining
fatigue life in this test series. However, it is likely that the magnitude of the proofload was large
enough to invalidate LEFM for some of the test specimens.

NASCRAC™-proof test logic does not account for retardation following the proofload.
However, NASCRAC™ can model fatigue crack growth retardation as part of a fatigue life
prediction analysis. Therefore, two NASCRAC™ fatigue life prediction analyses were
performed for each of the tests summarized in Table 4.7.2-1. The input for the NASCRAC™
analyses is summarized in Table 4.7.2-2. The first NASCRAC™ analysis used the Wheeler
retardation model to account for fatigue crack growth retardation following the proofload. The
value of K¢ was increased from 30 to 51 ksiVinch to model the K at which the specimens were
observed to fail. The second analysis did not account for retardation. The results of these
analyses are summarized in Table 4.7.2-3.
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Table 4.7.2-2, Base Input for NASCRAC™ Analyses of Test Series III-a

NASCRAC™ INPUT VALUE CORRESPONDING TEST
DIMENSION
MODEL 605 III-a STAGES 2 and 3
GEOMETRY al varied al(STAGE 2)
a2 varied a2(STAGE 2)
W1 3.001 bl
W2 3.001 b2
LOADING TRANSIENT 1 1 cycle STAGE 2 load
MAX: EQ.B varied FIGURE 4.7.1-2
R-RATIO: 0
TRANSIENT 2 5000 CYCLES STAGE 3 LOADS
RANGE:. EQB 14,01, -9.34 FIGURE 4.7.1-2
R RATIO: 0.2294 TABLE 4.7.1-1
BLOCK 1 X TRANSIENT 1
TRANSIENT 2
REPEATED TO FAILURE
material 2219-T851 Al ALUM3 2219-T851 Al
properties L-T, T-L 75F #104 LAB AIR
SIGYS 53
YOUNGS 10,000
POISSN 0.33
NWheeler 1.3
CWheeler 2.0
Kc 51.0

Table 4.7.2-3. Experimentally-Observed and NASCRAC™.Predicted Remaining Life for Tests in Series ITI-a

TEST EXPERIMENTALLY NASCRAC™.-PREDICTED
OBSERVED NO RETARDATION WHEELER
RETARDATION
(CYCLES) (CYCLES) (CYCLES)
II1-a/1 114,152 65,000 70,000
II1-a/2 48,478 20,000 25,000
111-a/3 386,245 75,000 150,000
111-a/4 0 0 0
1I1-a/5 385,124 80,000 155,000
II1-a/6 348,011 70,000 145,000
I1-a/7 0 0 0
11-a/8 515,458 0 0
111-a/9 551,728 0 0

Based on Table 4.7.2-2, it is concluded that:

Given the proper initial crack size, NASCRAC™-predicted remaining life is, in some
cases, more than 300,000 cycles less than the experimentally-observed remaining life.
Accounting for retardation in the NASCRAC™ analyses relieves some but not all of the
discrepancy.
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NASCRAC™ predicts failure upon crack transition, whereas some fatigue life was
experimentally-observed beyond this transition. In three tests, the number of cycles of fatigue
life remaining following transitions was measured. These observations are given in Table 4.7.2-
2. For comparison, the life remaining following the proofload is also given.

Table 4.7.24. Fatigue Life Remaining after Proof Load and after Transition, Test Series I1I-a

TEST Irem-PROOF {rem-TRANSITION
(CYCLES) (CYCLES) (% of frem-PROOF)
/6 348016 14300 4
8 515458 49800 10
s 551728 26400 5

The available life beyond transition is less significant than the retardation. The
experimentally-observed remaining life after the transition, and the experimentally-observed
retardation, as defined in Section 4.11, are not enough to account for the discrepancy between
NASCRAC™-predicted and experimentally-observed life remaining after the proofload. The
definition of retardation from Section 4.11 is somewhat arbitrary, and does not represent the
additional fatigue life due to the overload exactly.

4.7.4 SYNTHESIS OF PROOF TEST LOGIC

The NASCRAC™-guaranteed remaining life and experimentally-observed remaining life
are plotted versus applied proofload in Figure 4.7.3-1. The input for the NASCRAC™ analyses
are summarized in Table 4.7.1-2. The magnitude of the proof load was varied in both the
experiments and the NASCRAC™ analyses.
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Figure 4.7.3-1. Experimentally-Observed and NASCRAC™-Guaranteed Remaining Life

It was found that cracks much larger than the NASCRAC™-predicted largest crack
survived the proofloads. In one case, this resulted in a NASCRAC™-guaranteed remaining life
greater than the experimentally-observed remaining life. In many cases , the NASCRAC™.-
guaranteed remaining life was much less than the observed remaining life. Retardation following
the proofload accounted for much of the additional fatigue life. Fatigue crack propagation
beyond NASCRAC™-predicted failure also accounts for additional remaining life. Based on
these observations, it is concluded that NASCRAC™ proof test logic is invalid for the tests
performed. Use of this capability should be avoided.
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48 TEARING INSTABILITY ANALYSIS

NASCRAC™’s “tearing instability analysis” capability provides an analyst with an
automated means of determining the stress level at which a crack in a plane stress specimen will
grow catastrophically to failure. Prior to this critical stress level, tearing of the specimen will occur
in a stable manner and will be arrested due to the increased tearing resistance of the material caused
by plasticity at the crack tip.

In the NASCRAC™ theory manual, the criteria for tearing instability are given as:
Kapplied > Kmateriaa  and dKapplied /da > dKmaterial /da

where Kgpiied = the stress intensity factor due to the applied stress, Kpaeria = the crack growth
resistance K corresponding to the initial load and crack length, dKgppiied /da = the slope of the
Kappliea curve (where the Kppliea curve is linear from (0, 0) to (a, Kappiied)), and dKmaeria /da =
the slope of the crack growth resistance curve at Kpaeria)r The tearing instability option in
NASCRAC™ requires input of a crack growth resistance curve (K-R curve) in tabular format or
as a power law function (Kpaerial = C; (Aa)P ). According to the tearing instability criteria listed
above, NASCRAC™ differentiates the crack growth resistance curve to determine the stress level
at which an instability occurs.

Figure 4.8-1 presents a flow chart of the NASCRAC™ tearing instability algorithm. This
chart maps the code contained in subroutines TEAR and GROTER and function RKAOUT. This
chart and a review of the source code suggests that NASCRAC™ does not employ the
aforementioned tearing criteria because it never computes a derivative of the K-R curve. Instead,
NASCRAC™ incrementally grows a crack using multiples of the input stress; K corresponding to
the multiplied stress value and the total crack length (including Aa due to tearing); and Aa from the
K-R curve. This incremental growth continues for a given stress level until Aa is smaller than a
hardwired tolerance (0.001) or the length of the crack exceeds 99% of the body width of the
specimen. To predict failure, this algorithm requires that a K-R curve input in tabular form
includes value of Aa that will allow a + Aa to exceed 99% of the body width of the specimen.
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Figure 4.8-1. Flow Chart of NASCRAC™ Tearing Instability Algorithm

A review of the NASCRAC™ tearing instability capability for three dimensional
configurations indicated that the capability has little applicability to three-dimensional
configurations available in NASCRAC™. To verify this conclusion, an electronic literature search
of the subject headings stability, instability, and tear was completed. The search included all
articles published in journals since 1988. No articles documenting three dimensional stable tearing
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under load control conditions were found. This lack of literature sources supported the
conclusions of the analyses described in Section 4.8.1: the multi-degree of freedom
NASCRAC™ configurations will not satisfy both the plane stress conditions required for stable
tearing and LEFM requirements at the tearing load. Therefore, a check of the NASCRAC™
source code was performed to compare the coded algorithm with the theoretical description and as
a tool to analyze tearing in two-dimensional cracked bodies. This effort is described in Section
4.8.2. Experimental data for three-dimensional tearing was obtained from test series III-a. This
data is discussed in Section 4.8.3.

4.8.1 ANALYSIS OF NASCRAC™ ALGORITHM FOR THREE DIMENSIONAL
BODIES

In NASCRAC™, tearing A
instability analyses may be
performed with the knowledge of
a tearing resistance curve, K-R, |K¢
and a Kapplied-a curve. Figure
4.8.1-1 illustrates a typical tearing
resistance analysis. The K-R [kic
curve is superimposed on the
graph such that Aa = zero
coincides with the initial crack

length, a,. Four K,ppiieq-a — 2, >
curves, corresponding to crack length, &, >
increasing loads P; through P4, |  ------ K spplied bad = P1 CRACK ExTENs|on,AA
are shown. For initial crack size, —-— K aoplied load = P2

ao, the load Py does not result in - - K aplied bad = P3

K > Kf.. Therefore, no crack T K pplieg ad=P4

propagation occurs. Crack — Kp

propagation begins at load P, Figure 4.8.1-1. Typical Elastic Tearing Instability Analysis

when Kapplied = Kic. At load P3, the crack has propagated a length Ag;. After this propagation
increment Kyppiies = Kr. The result is a stable crack of length, a, +Aa3. At load P4, the tangents
of the Kqppliea-a and the Kr-Aa curves are equal. Therefore, crack propagation is unstable.

K-R curves are generally considered material properties. However, these curves are
affected by a characteristic length, the thickness of the experimental specimens. Typical thickness
dependent behavior of these curves is illustrated in Figure 4.8.1-2. As specimen thickness
increases, the slope of the K-R curve is reduced. This trend continues until the conditions of
constraint are plane strain for the entire crack front. The result of these plane strain conditions is
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that the slope of the K-R curve is zero. ASTM Standard E-399 defines the thickness, B, at which

plane strain conditions may be assumed as:

2
B-2.5 %)
60

(4.8.1-1)

where K is the applied mode I stress intensity factor and ©,, is the material yield stress. The
length, B, is an important design criterion for stable tearing tests.

C

increasing
thick ness
K
plane strain
K I conditions

Aa

Figure 4.8.1-2. Effect of Specimen Thickness on Tearing Resistance Curves

For through cracks, the specimen thickness
determines the conditions of constraint along the crack
front, and therefore the nature of the K-R curve. In two-
dimensional crack problems the specimen thickness is also
the length of the crack front. However, for three-
dimensional cracks, as shown in Figure 4.8.1-3, the
thickness is not the same as the crack front length.
Material far from the crack front will not affect the
conditions of constraint along the crack front. Therefore,
neither specimen width nor thickness is a good description
of the conditions of constraint along a three-dimensional
crack front. The crack lengths are not likely to be
appropriate descriptions of constraint either; crack length
does not affect crack constraint in three dimensional cases.
The length of the crack front might be a more consistent

< —W1 = 27—

W2 = 5— |

-

¢ =poo X1
STRESS DISTRB UTION a=ca

I

IN X2 DIRECTION

Figure 4.8.1-3. Specimen Cross Section and
Load Distribution for 3D Tearing Instability
Test

length to characterize the conditions of constraint along the crack front, and hence was used to
characterize K-R curves for three-dimensional analyses for the evaluation of NASCRAC™.
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The following requirements are necessary to experimentally test the NASCRAC™ three
dimensional elastic tearing stability capability:

I Crack must be 3D
Either a corner (2 DOF), surface (3 DOF) or imbedded (4 DOF) crack must be used.
NASCRAC™ model 605, a corner crack in a plate, is a possible test configuration.

I Linear elastic fracture mechanics (LEFM) must apply

A major assumption in LEFM is small scale yielding. To have the near tip fields be
described by K, the plastic zone at the crack tip must be small compared to all characteristic
lengths of the specimen. One of the factors that determines the size of the plastic zone is
the ratio of the far field stress, o, to the yield stress, G,, of the material. In the limiting
case of G = G, the plastic zone extends throughout the entire body.

III Tearing must be initiated
For the initiation of tearing, K,pplieq must be greater than or equal to Ky .

IV Stable tearing must occur before instability occurs

For stable tearing to occur, condition III must be met and the slope of the K-R curve must
be greater than the slope of the Kappiied-a curve for some range of crack length a, + Aa.
Note that as the specimen thickness increases, the slope of the K-R curve decreases.

A possible test configuration is proposed in Figure 4.8.1-3 for a 2219-T851 aluminum
specimen subjected to a monotonically increasing load to failure. This design satisfies condition I

and can be modeled by NASCRAC™ configuration 605. The crack size and shape of this quarter-
elliptical crack can be uniquely described by the crack length, g, and the aspect ratio, o, defined as

a=2. 48.1-2
(44

Condition 11 dictates that LEFM be applicable. A parameter, B, was defined as the ratio of
far field extreme fiber bending stress, G, to the material yield stress, G,:

p=2 48.1-3
60

This parameter describes the likelihood that LEFM applies. As B approaches 1.0, far field
yielding is approached. Therefore, LEFM is less likely to be applicable. For the proposed design,
B was set to 0.5, which satisfies condition II.

Preliminary calculations suggested that o = 0.5 was an acceptable aspect ratio. Given a =
0.5, B = 0.5, Kic = 30.0 ksiVin and the geometry shown in Figure 4.8.1-3, NASCRAC™
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calculations showed that the smallest crack for which K = K|, (condition IIT) was a = 0.65 inches
and ¢ = 1.3 inches.

For this analysis, the path length of the crack front, s, was compared to the length, B, as
calculated from equation 4.8.1-1. In terms of @ and «, the path length, s, of a quarter-elliptical
crack was approximated by:

2
s= % (“7;;—1) 48.14

Fora =0.65" and a = 0.5, the path length, s, is 1.6". For 2219-T851 aluminum (when K
= Kjc) the length, B, at which plane strain conditions develop is 0.9". For plane strain conditions
the K-R curve will be flat, as shown in the plane strain curve in Figure 4.8.1-2. For these
conditions, any tearing that occurs will be unstable because the slope of the Kapplicd-a curve will be
positive for this geometry and loading. Therefore, condition IV cannot be satisfied.

The analysis outlined above proved that conditions I through IV could not be satisfied
simultaneously for the proposed test design. Is a design possible in which conditions I through IV
are satisfied simultaneously? A more general analysis was performed to answer this question.

A surface crack in an semi-infinite body under uniform far-field load was assumed. From [1], the
stress intensity factor for this configuration is,

1.12¢0
K, ==
Imax 37[ E a2 na

8 8¢ 48.1-5

Figure 4.8.1-4. shows the geometry for this
configuration. NASCRAC™ semi-, quarter- and elliptical 46
crack solutions are based on the solution for an elliptical crack
in an infinite body. Therefore, it is assumed that equation

semi-infinite
4.8.1-5 is a reasonable approximation for any cracks modeled body
in NASCRAC™ that satisfy condition I, that is, semi- or ,@E
quarter- elliptical cracks. For bending loads, the extreme fiber 2

bending stress was substituted for the uniform far field stress
in 4.8.1-5. Substituting the load and geometry of Design 1 \ /
into equation (5) predicts Kimax = 34.5 ksiVin. The f
NASCRAC™ predicted value for this crack size and load is  Figure 4.8.1-4. Geometry for K|max
30.2 ksiVin. The error of 15% was deemed acceptable for the Solution of Equation 4.8.1-5
purpose of this analysis.
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To satisfy condition III, Kimay in equation 4.8.1-5 was set to Kj.. Restating equation 4.8.1-
5 in terms of the parameters defined in 4.8.1-2 and 4.8.1-3 leads to:

_ 5.06Bo,Va

48.1-6
3+a?

Ic

The parameter B in equation 4.8.1-6 gives an indication of the likelihood of condition II being met.

To satisfy condition 1V, it was necessary, but not sufficient, for either the Kapplied-a curve
to have a negative slope, or the K-R curve to have a positive slope. When monotonically
increasing loads are applied to cracked bodies, as in NASCRAC™ simulations, the slope of the
Kapplied-@ curves are typically positive. Therefore, it was necessary to test in a situation where the

K-R curve has a positive slope. In other words, the characteristic length must be less than the
plane strain condition length, B.

A parameter, A, is defined in equation 4.8.1-7 as the ratio of the crack front length to the

length B,

A=—— 4.8.1-7

where s is the path length of the crack front required to reach Kj for a given load and aspect ratio,
and O, and K| are the material properties. The slope of the Kg-Aa curves decrease as the
parameter A increases, until the slope is effectively zero at A = 1.0. Therefore, the value of A
represents the propensity for stable tearing. Combining equations 4.8.1-4 and 4.8.1-6 with
equation 4.8.1-7 leads to:

A

1
2 2
___0.0245 o +1 (3+a2)2 4818
B2 2a2
A plot of A versus a, for various values of B is given in Figure 4.8.1-5. The parameters
of design 1 are indicated on this graph. The parameters of design 2, which will also be described,
are indicated.
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3 It is significant that A is a
function only of the two
dimensionless parameters o and .

25

Therefore, the choice of overall size
and material of the test specimen do
not affect the outcome. It is apparent
from the graph that for a given value
of B, A has a minimum value at o
approximately equal to 0.75.
Therefore, o = 0.75 is a good value
to optimize design suitability. Note
that the intersection of B <1 and A <
1 1s a minimum requirement for
conditions I through IV to be met. In
an ideal test design, both values
S — would be less than 0.5. However,

1 15 2 25 3| there are no values of o for which
ASPECT RATIO, o= ac this is true.

Figure 4.8.1-5 . Design Parameter A asa Function of ! and [3
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Nonetheless, this analysis was sufficient to show that the set of situations in which
conditions I through IV are met simultaneously is limited, if not empty. However, there is no
value of B or Awhich gives an absolute definition of unacceptable. Furthermore, assumptions
have been made in defining A, and approximations have been made in calculating the formula for
A . For the sake of thoroughness, a second design was analyzed.

Design 2 was formulated using insight obtained from the general analysis. A value of o0 =
(0.75 appears to be optimal for the design criteria. The value of B was chosen to be 0.65. Except
for crack size, the geometry is the same as that shown in Figure 4.8.1-3. NASCRAC™
simulations show that the minimum crack size to obtain Kj = K;. at the given load (condition III)
is a = 0.4125, ¢ = 0.55. For this crack size and load, the Kj estimated by equation 4.8.1-6 is 32.6
ksivin. For this design, equation 4.8.1-6 was an adequate approximation of the NASCRAC™
simulation.

Condition II may be checked with a first order estimation of the plane stress plastic zone
size rp, given by:

2
rp = —1-[51—] 48.1-9
2n\ o,

The estimated plastic zone size is 0.05 inches, or 12% of the crack length, a. The size of
the plastic zone r, relative to the crack length a is likely to preclude the use of K| as a tearing
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criterion. The plastic zone size at K| is dependent only on material properties. Therefore, the
crack length, a, must be increased to make LEFM applicable. However, the crack length, s, is a
linear function of a, and there is a maximum length of s that is acceptable.

Condition IV may be checked with equation 4.8.1-4. For a = 0.55 inches and o = 0.75, s
= 0.76 inches, which is only slightly less than the plane strain length of B = 0.9 inches. Clearly, a
can not be increased by much without violating condition IV. It appears that geometric constraints
govern the design process.

The parameterized graph in Figure 4.8.1-5 also illustrates the design constraints. The
approximate location of design 2 is indicated on the graph. The applicability of LEFM can be
improved only by reducing B. This would result in a larger crack at the initiation of tearing, and
therefore the process zone will be a smaller fraction of the crack length. However, B cannot be
decreased without increasing A, which is already close to the maximum allowable value of 1.

The general analysis shows that the difficulties in reaching an acceptable design are material
independent. This analysis suggests that an aspect ratio of o = 0.75 is optimal for the given
design constraints. Design 2 suggests that stable linear elastic tearing might only occur in
NASCRAC™ 3D geometries only when LEFM and the significance of any plane stress
conditions along the crack front are questionable.

The assumption that the crack front length, s, is the characteristic length for the K-R curves
of 3D cracks is untested. The only other possible choice for a characteristic length is the specimen
width or thickness. Both of these lengths are approximately equal to or greater than the crack front
length, s. Therefore, the choice of width or thickness as the characteristic length for K-R curves
would not influence the outcome of these analyses. Two other assumptions that were made in
these analyses are: (1) the length B defines a length at which the K-R curve is flat, and (2) LEFM
is not applicable when the process zone estimated by equation 4.8.1-9 reaches 10% of the crack
length.

In conclusion, [the NASCRAC™ capability to simulate stable tearing in a 3D body
does not appear to be applicable to available configurations.]. A test design in which LEFM
is questionable and the extent of stable tearing is minimal appears to be the most likely situation in
which all required conditions for a 3D NASCRAC™ tearing instability analysis are satisfied.
NASCRAC™ ’s three-dimensional tearing algorithm was not experimentally validated because a
suitable test configuration could not be designed.

4.8.2 VERIFICATION OF NASCRAC™ ALGORITHM FOR LIMITED 2-D
APPLICATIONS

To verify the operation of the NASCRAC™ tearing instability algorithm for one-
dimensional cracks, a test case was developed and analyzed step-by-step. Figure 4.8.2-1 shows
the geometry of the test specimen. Figure 4.8.3-2 and Table 4.8.2-1 show the K-R curve and data,
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respectively, used in the test case. The initial crack length of the specimen was 0.3 inches and the
input stress value was 20 ksi. For this configuration, NASCRAC™ predicted a tearing instability
when the stress reached 27.7 ksi, a factor of 1.385 greater than the input stress.

o= 20 ksi

N I

—»] fe— 03"
— Y

10" _

P

Figure 4.8.2-1, Geometry of Tearing Instability Test Case
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Figure 4.8.2-2. Crack Growth Resistance Curve for Tearing Instability Test Case
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Table 4.8.2-1. Crack Growth Resistance Curve Data for Tearing Instability Test Case

Aa CRACK RESISTANCE K dK/d(Aa) !
(INCHES) (ksi Vin) (ksi Vin /in)
0.00 0.0 na
0.01 114 475
0.02 19.0 312.5
0.04 239 217.5
0.06 277 170
0.08 307 132.5
0.10 330 975
0.12 34.6 875
0.14 365 80
0.16 378 60
0.18 389 50
0.20 398 365
025 412 23
030 421 15
035 427 10
0.40 431 6.5
0.50 43.6 2.5
0.60 43.6 0.0
99.0 436 na

1  based on a central difference calculation,
dK/d(Da) = 0.5*[((Kp+1 - Kn)/(Dapyq - Dag)) +((Kp - Kp.1/(Day, - Dag.1))]

The test case results suggest that dKapplied /da > dKmaterial /da does not occur until the
stress factor reaches 1.47 or, equivalently, when Kapplied = 32.38 ksiVin. Table 4.8.2-2 lists the
series of calculations which led to this conclusion. The dKmaterial /da values in Table 4.8.2-2
were computed using interpolated values of the central difference values listed in Table 4.8.2-1. A
more exact analysis was attempted by curve fitting a power law (Kmaterial = C1 (Aa)P ) to the
crack resistance curve using the data points Aa = 0.08 and Aa = 0.16 to obtain C] and p. With this
curve fit, the predicted critical stress factor was 1.444. This result and the NASCRAC™ predicted

critical stress factor of 1.385 are also shown in Table 4.8.2-2.

Table 4.8.2-2. Calculated Values of K and dK/da for the Tearing Instability Test Case

STRESS FACTOR | Kapplied = Kmaterial dKapplied /da = K/a dKmaterial /da
(ksi Vin) (ksi Vin fin) (ksi Vin fin)
1.0 22.03 734 2538
13 28.63 954 1584
1.385 30.51 101.7 1349
14 30.84 102.8 130.4
1.5 33.04 110.1 973
1.46 32.16 107.2 1103
147 32.38 107.9 106.9
1.444 31.81 106.0 106.0 )

1 based on first derivative of curve fit function, Kmaterial = 65.52 (Da) 030
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In summary, the NASCRAC™ tearing instability capability has been verified. It is a
functioning capability if input data for the crack growth resistance curve follow a power law
function as prescribed in the NASCRAC™ user's manual. However, [the failure criteria of the
coded algorithm do not adhere to the criteria listed in the NASCRAC™ theory manual.]
The coded algorithm is conservative compared to the listed criteria, i.e., NASCRAC™ will predict
the occurrence of a tearing instability at a lower critical stress factor compared to a prediction using
the listed criteria as long as the K-R data in the input table extends beyond the dimensions of
the specimen.

4.8.3 EXPERIMENTALLY GENERATED K-RESISTANCE CURVES

Stage 2 of Test Series IIl-a was tearing tests. The geometry for this series is shown in
Figure 4.8.3-1. The tearing loads are defined as NASCRAC-calculated K(1) and K(2) for crack
lengths a; and ap, proofload P; and moment arm b3. Average values for this test series are given
in Table 4.8.3-1. Crack sizes ranged from 0.558 and 0.840 inches for a; to 1.150 and 1.796 inches
for a;. Data from the manufacturer of this material indicates K. of about 25 ksiVin. The value for
K. in the NASCRAC material library is 30 ksiVin. With a yield strength of 53 ksi, all but the
smallest observed length of a,, and all of the crack front lengths and the thickness of the test
specimen meet the requirement for LEFM. Furthermore, the crack front length and specimen
dimensions are large enough to anticipate plane strain behavior. Therefore, tearing stability theory
would predict that these tests should fail at K.

It was observed, however, that Kjc is not a good predictor of failure in these tests.
Experimentally measured K-R curves are shown in Figure 4.8.3-1. The curves measured for aj in
each test tend to be higher than the curves measured for a;. This might indicate that the K-R
curves are geometry dependent in these tests.
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Figure 4.8.3-1. Geometry for Test Series ITl-a

Table 4.8.3-1. Average Values for Stage 2 and 3 of Test Series I1l-a

NUMBER OF TESTS 9
DIMENSION AVERAGE VALUE UNITS
al(STAGE 2) 0.795 INCHES
a2(STAGE 2) 1.160 INCHES
bl 3.001 INCHES
b2 3.001 INCHES
b3 proof 6.082 INCHES
(3 pt. CONFIG.)
b3proof 10.026 INCHES
(4 pt. CONFIG.)
b3stage3 6.034 INCHES
Ap3 20.97 KIPS
R ralioslage 3 0.2294
Poroof VARIED KIPD
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Figure 4.8.3-2. Experimentally Measured K-R Curves

Of the nine test specimens, only two failed. The NASCRAC-calculated K at failure was
approximately 51 ksiVin for both tests. This is well beyond the manufacturer-reported value of
approximately 25 ksivVin and the NASCRACTM material library value of 30 KsiVin. LEFM was
probably invalid by the time the stress intensity factor reached 51 ksiVin. However, LEFM was
valid between 25 and 30 ksiVin, when failure was anticipated. Based on these observations, and
the analysis in Subsection 4.8.1, it is concluded that Kjc is not a valid predictor of failure in this
test series.

4.84 REFERENCES FOR SECTION 4.8

1. Broek, D., Elementary Engineering Fracture Mechanics , 4th ed, Martinus Nijhoff, Boston,
1986.
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49 CREEP CRACK GROWTH

This section describes work performed to test the validity of NASCRAC™’s Creep
Crack Growth capability. Proper calculation of the creep crack growth parameter, C*, is
essential to NASCRAC™ creep crack growth rate prediction capability. NASCRAC™ uses
plastic J integral calculations to find C*. Section 4.3 describes a coding error found for the
plastic J solution of configuration 303. All C*-calculations described in this section were made
with a version of NASCRAC™ corrected for this error.

4.9.1 NASCRAC™ IMPLEMENTATION OF CREEP CRACK GROWTH

In a creeping material, strain rate, stress rate and stress can be related by:

4] n
E=—+Bo ™ 49.1-1
E

Note the similarity in the form of this equatation to the Ramberg-Osgood relationship.
Neglecting elastic strains, the stress and strain rate fields take a form similar to the HRR field [1]

C‘ Pogept1
Oy = (InBr) 8, (Peep©) 4.9.1-2
E‘J = (InBr) %ij(ncmpne) 491'3

where éﬁ(n 0) and éij(nm,,,,e) are dimensionless functions. The parameter C* is a path-

creep?
independent integral defined by equation 4.9.1-4. The definitions for this equation are given in
Figure 4.9.1-1.

. . ou.
where

WC = jcudéu 4.9.1’5
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Figure 4.9.1-1. Definitions for Equation 4.9.1-4

The equation for C* is analogous to the plastic term in the J-integral, with strain rate
replacing strain. Note, however, that W_ is not the same as dW_ /dt, where W_ is the term

defined for the J-integral. Given C*, NASCRAC™ predicts creep crack growth rate with
equation (4.9.1-6)

oa Ca(C')""" 49.1-6

Where C3 and nereep are temperature independent material growth model parameters.

At the onset of loading, the creep strains will be zero. Therefore, the stresses near the
crack tip will be better described by the K fields. In the long term, the creep strains will be much
larger than the elastic strains, and the C* field will dominate. This is known as the steady state
creep crack field.

For intermediate times, two methods are available in NASCRAC™. for interpolating
between the initial K fields and the long term, steady state creep fields. The Riedel method
calculates a parameter C(t) and the Saxena method calculates a parameter, C;. In either method

the appropriate parameter is substituted for C* in 4.9.1-6.
4.9.2 LITERATURE REVIEW OF CRACK GROWTH PARAMETERS
The C* field is not accepted as a good predictor for creep crack growth rates for all

materials. For instance, Kaufman, er al [3] reported that creep crack growth in 2219-T851
aluminum may be described by the following relationship:
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log (cii_(tz =0.85K-4.14 4.9.2-1

Where K is the stress intensity factor. Benussan, et al {4] concluded that “there is no
unique correlation between da/dt and the C* integral, the net section stress or the reference stress
...~ for 2219-T851 aluminum.

Research on 6061 aluminum has been conducted by Radhakrishnan and McEvily [ 5, 6 ].
They conclude that “... within a limited range, a relation of the type

da «\N
— =A(C 492-2

with n = 1 appears to be valid.” However, they also conclude that the C* relationship
“clearly showed a load dependent character” and “did not give any relationship that could be
used for design.” The authors recommend a parameter of the type (A /P*) to describe da/dt over

a wide range, where A is the load-line displacement and P is the load for a compact tension test
specimen.

Type 304 stainless steel was chosen for this test series since the literature indicated that
the C* model is not appropriate for aluminum. Summarazing other researcher’s conclusions,
Ozmat, et al [7] summarized C* modeling efforts for 304 stainless steel: *... most investigators
have found that the overall creep crack growth rates could be correlated better with a C*
parameter than with K or net section stress.” Ozmat, et al also stated that, “apparent planar
[crack] growth was found only in very thin samples which most probably had plane stress
deformation characteristics, and those with deep side grooves.” Yokobori, et a/[8] found that C*
has some load dependence as a predictor of crack growth rates. They recommended the use of a
different paramer, Q*, to predict da/dt.

Observed crack growth rates for type 304 stainless steel from several other researchers
[9,10,11,12] are shown in Figure 4.9.2-1. Taira ez al [10] reported separate test results for two
different geometries. These distinct sets of data are denoted Fig 5a and Fig 5b, after the original
reference. This is not intendended to be an exhaustive list, only to give an indication of the
scatter found in the published data. There is more than an order of magnitude scatter in the range
of observed crack growth rates for a given C*. Much of this variation was observed within each
individual study.
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Figure 4.9.2-1. Creep Crack Growth Rates as a Function of C*
4.9.3 VALIDATION OF NASCRAC™ CREEP CRACK GROWTH PREDICTION

The geometry for test series IV-d is shown in Figure 4.9.3-1. The dimensions for the
three tests in this series are given in Table 4.9.3-1. For each test, four NASCRAC™ analsyses
were performed to accomodate combinations of the two different short term interpolation
methods, and two sets of creep crack growth rate parameters representing the envelope of data
reported in Figure 4.9.2-1 The input for these NASCRAC™ analyses is summarized in Table
4.9.3-2. Experimentally-observed and NASCRAC™.-predicted crack growth are summarized in
Tables 4.9.3-3 through 4.9.3-5. The crack length increment was defined as the projection of the
crack onto the section A-A in Figure 4.9.3-1. Three of the six observed crack tips were diverting
from the plane of section A-A. It appeared as though these cracks were in the begining stage of
crack bifurcation, as described by Ozmat, er al [10]. The wide range of NASCRAC™-predicted
crack growth rates preclude the presentation of these analyses in graphs.
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Figure 4.9.3-1. Geometry of Test Series IVd
Table 4.9.3-1. Dimenslons for Test Series I'V-d
DIMENSION 1v-dR2 Iv-dj3 1V-d/4 UNITS
al(0) 0.399 0.546 0.395 INCHES
bl 0.963 0.965 0.965 INCHES
b2 0.10 0.10 0.10 INCHES
c 6.6 58 49 ksi
TIME OF TEST 287 325 321 HOURS
Aal 0.012 0.016 0.011 INCHES
Aa2 0.015 0.018 0.010 INCHES

4-175




-

Table 4.9.3-2. Base Input for NASCRAC™ Analysis of Test Series IV-d

NASCRAC™ VALUE CORRESPONDING
PARAMETER TEST DIMENSION
MODEL 303 Iv-2 IV-3 V4 TEST SERIES 1V-d
GEOMETRY a 0.399 0.546 0395 al(0)
w 1513 1.516 1516 (b1 *1)2
t 0.100 0.100 0.100 b2
r 0.863 0.865 0.865 bl -b2
LOAD A 6.6 58 49
MATERIAL YOUNGS 22,300 304 SS
PROPERTIES N 4.5 600°C
D 59.7
A’ 2.29E-11
Ncreep 6
CREEP c3 4.8E-2
CRACKING
UPPER BOUND M 0.5
CREEP c3 1.1E-2
CRACKING
LOWER BOUND M 0.962

Figure 4.9.3-3. Experimentally-Observed and NASCRAC™-Predicted Crack
Growth Increments for Test IV-d/2

TEST1V-d/2 TEST TIME = 287 HOURS l Aa (INCHES)
EXPERIMENTALLY-OBSERVED

CRACKTIP1 0.012

CRACK TIP 2 0.015

NASCRAC™-PREDICTED
GROWTH INTERPOLATION
PARAMETERS METHOD

UPPER BOUND RIEDEL 0.064
SAXENA 0.069

LOWER BOUND RIEDEL 0.008
SAXENA 0.015

Figure 4.93-4 Experimentally-Observed and NASCRAC™-Predicted Crack Growth Increments for Test IV-d/3

TESTIV-D/3 TEST TIME = 325 HOURS I Aa (INCHES)
EXPERIMENTALLY-OBSERVED
CRACK TIP1 0.016
CRACK TIP2 0.018

NASCRAC™-PREDICTED

GROWTH PARAMETERS INTERPOLATION
METHOD
UPPER BOUND RIEDEL 0.096
SAXENA 0.042
LOWER BOUND RIEDEL 0.001
SAXENA 0.014
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Figure 4.9.3-5. Experimentally-Observed and NASCRAC™-Predicted Crack Growth Increments for Test IV-d/4

TEST IV-D/4 TEST TIME = 321HOURS l Aa (INCHES)
EXPERIMENTALLY-OBSERVED
CRACKTIP 1 0.011
CRACK TIP 2 0.010

NASCRAC™.PREDICTED

GROWTH PARAMETERS INTERPOLATION
METHOD
UPPER BOUND RIEDEL 0.054
SAXENA 0.035
LOWER BOUND RIEDEL 0.000
SAXENA 0.007

The experimental observations fall within the range of NASCRAC™-predictions. Based
on this observation, and the observations of other researchers it is concluded that;:

* Given proper material parameters, NASCRAC™ might predict creep crack growth
accurately for some materials. However, the user should beware that data from any given
set of tests might be valid in only a narrow range of geometry and load configurations.
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410 CRACK TRANSITIONING

Verification and validation of NASCRACTMs transitioning capability focused on three
objectives:

* determination of the effect of shape limitations in NASCRACTM (e.g., semi-elliptical,
quarter-elliptical) during crack transitioning.

» analysis of f;, the arbitrary transitioning factor in NASCRACTM,

 quantification of the effect of transition assumptions on predicted fatigue life.
4.10.1 VERIFICATION OF NASCRACTM CRACK TRANSITION ALGORITHM

NASCRACTM provides thirteen different paths for transition analysis. Transitioning in
NASCRACTM ranges from the simplest case, i.c., a single transition where a two degree-of-
freedom crack transitions into a single degree of freedom crack, to the most complex case, i.c.,
three transitions in which a four degree of freedom crack eventually becomes a one degree of
freedom crack. Table 4.10.1-1, which was adapted from Table 5.2 of the NASCRACTM User's
Manual [1], lists the available transition paths.

Table 4.10.1-1. Transition Paths in NASCRACT™

INITIAL CRACK CONFIGURATION NUMBER OF DEGREES OF FREEDOM
4 3 2 1

BURIED ELLIPTICAL CRACK (502) 502 702 605 203

BURIED ELLIPTICAL CRACK (502) 502 702 202

SEMI-ELLIPTICAL SURFACE CRACK IN A PLATE (702) 702 605 203

SEMI-ELLIPTICAL SURFACE CRACK IN A PLATE (702) 702 202

SEMI-ELLIPTICAL (CIRCUMFERENTIAL) SURFACE 703 303

CRACK IN A HOLLOW CYLINDER (703)
SEMI-ELLIPTICAL (CIRCUMFERENTIAL) SURFACE 703 401
CRACK IN A HOLLOW CYLINDER (703)
SEMI-ELLIPTICAL AXIAL SURFACE CRACK IN A 704 302
HOLLOW CYLINDER (704)
SEMI-ELLIPTICAL AXIAL SURFACE CRACK IN A 704 205
HOLLOW CYLINDER (704)

SEMI-ELLIPTICAL SURFACE CRACK IN A HOLLOW 705 301
SPHERE (705)

SEMI-ELLIPTICAL SURFACE CRACK IN A HOLLOW 705 401
SPHERE (705)

QUARTER ELLIPTICAL CORNER CRACK IN A PLATE 605 203

(605)

QUARTER ELLIPTICAL CRACK FROM A HOLEIN A 601 208
PLATE (601)

QUARTER ELLIPTICAL CRACK FROM A HOLE IN A LUG 602 209

(602)
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The transition algorithm does function as described in [1] and [2]; however, analyses of
NASCRACTM results revealed problems which were caused by the basic assumption of the
algorithm, the transitioning factor f;. The errors associated with this f; approach are discussed in
the following sections. One minor implementation error was detected which needs to be
documented. During execution of the crack transitioning option in NASCRACTM, a user is
prompted for f; , which is defined as TRFCTR. The following information is given:

TRFCTR=10  Equal area basis
TRFCTR = 1.15  Transitioning performed on the basis of non-crossing cracks

The range of TRFCTR is 0.5 10 1.5. Suggested Value is 1.0

Figure 4.10.1-1. NASCRAC ™ Prompt for f;

In a transition analysis from configuration 702 to 605, any value other than 1.15 will result
inf; = 1.0 being implemented, even if the input is in the specified range.

4.10.2 VALIDATION OF NASCRACTM CRACK TRANSITIONING ALGORITHM

Test series I-2-a, fatigue crack propagation with transitioning, was designed to verify and
validate NASCRACTM’s transitioning capability. Prior to performing test series I-2-a, PMMA
specimens were tested to refine the test procedure. PMMA specimens were used because the
crack front could be observed throughout the fatigue life tests. These tests provided data for
assessing NASCRACTM’s assumption of an elliptically shaped crack front for post-transition
configurations. The test geometry consisted of an off-center flaw in a nominal 1.5” by 3.0” in
cross section. The beam was loaded cyclically in four point bending. Figure 4.10.2-1 shows crack
fronts observed throughout the course of one PMMA test. Each front is represented by lines
connecting points obtained from photographs of the crack fronts.
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Some of the crack fronts shown in Figure 4.10.2-1, particularly the 23,000 cycle front “W”
and the 28,000 cycle front “ZD” do not resemble ellipses. Both of these fronts occurred after a crack
tip reached a corner of the beam, i.e. after the crack transitioned. These results highlight two key
issues associated with the NASCRACTM transition algorithm: 1) the NASCRACTM algorithm
ignores the portion of fatigue life spent when the crack is not elliptical or straight through the specimen

Figure 4.10.2-1. Selected Crack Fronts from a Representative PMMA Test

thickness, and 2) the assumption that the crack remains nearly elliptical is not realistic.
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The purpose of test I-2-a/2 was to determine crack front shapes throughout the course of crack
propagation in test series I-2-a. The geometry for this test is defined in Figure 4.10.2-2. The
specimen was 2219-T851 aluminum. The dimensions of this test specimen are given in Table 4.10.2-
1. Parameters that describe the load history are defined in Figure 4.10.2-3. NASCRACTM and
FRANCS3D stress intensity factor calculations are made for several fronts observed in this test.

@ INITIAL NOTCH

CRACK

" \‘b_..‘ TIP 2
7/

SECTIONA - A
Figure 4.10.2-2, Geometry for Test Series I-2-a

LOAD

nnax

Hnear

nnln

AP =Rnay’ Rnin = Bhnax

o TIME

Figure 4.10.2-3. Definitions of Load Parameters
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Table 4.10.2-1. Dimensions of Tests 1-2-/2

DIMENSION VALUE UNITS
al(0) 0.254 INCHES
a2(0) 0.254 INCHES
a3(0) 0.250 INCHES

bl 1.500 INCHES
b2 2.000 INCHES
b3 24 INCHES
b* 0.500 INCHES

Two types of cyclic loads were applied to this test: fatigue crack propagation load cycles
and marker load cycles. In all, 90,000 fatigue crack growth load cycles were applied to this test.
For the first 30,000 fatigue cycles, Ap = 15.5 kips. For the remaining 60,000 fatigue crack growth
cycles, Ap = 12.0 kips. The Rratio was 0.2 for all fatigue crack growth cycles. After every
10,000 fatigue crack growth cycles, 5000 marker cycles were applied. These additional cycles
were intended to “beachmark™ the fatigue surface. These marker cycles nominally had the same
maximum applied load as the fatigue crack growth cycles, but only 25% of the load range. The
marker cycles were not counted in the total cycle count. In all, eight 5000 cycle sets of marker
loads were applied. Crack tip measurements were made on the free surface every 5000 cycles
throughout the test. Because the amplitude of the fatigue crack growth cycles was varied, this test
was not included in the discussion in Section 4.5.2.3. No comparisons between NASCRACTM
predicted and experimentally observed crack growth rates were made for this test.

SEM observations of the crack front from test I-2-a/2 were made. Fatigue striations were
observed over some of the crack face. However, none of the observed striations were continuous
over the entire crack front. Therefore, the SEM could not be used to determine the crack front
history of these tests.

Parts of several beachmarked crack fronts were visible by inspection. Beachmarks could
not be identified continuously along any of the eight marked fronts. However, enough front was
visible to identify 10 to 12 points along each crack front. Splines were passed through these points
to define the crack fronts shown in Figure 4.10.2-4. Stress intensity factor calculations were
performed for the 20,000, 30,000 and 60,000 cycle crack fronts, which are shown in bold in the
figure.
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Figure 4.102-4. Crack Fronts from Test 1-2-2/2

Figures 4.10.2-5 through 4.10.3-7 show the crack fronts observed at 20,000, 30,000 and
60,000 cycles of test I-2-a/2. FRANC3D stress intensity factor calculations were performed on
these shapes. One to three NASCRACTM “best fit” shapes are also shown in each of these
figures. The best fit shapes were used as input to NASCRACTM stress intensity factor
calculations but were not the result of NASCRACTM fatigue crack growth predictions. Figures
4.10.2-8 through 4.10.2-10 show the results of the FRANC3D and NASCRACTM stress intensity
factor calculations. FRANC3D calculates stress intensity factors along the entire crack front. The
FRANC3D-calculated stress intensity factors sometimes exhibit deviations near the free surfaces.
These deviations are the result of the method of stress intensity factor calculation used for these
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analyses, and are spurious. Approximate values extrapolated to the surface are shown as dotted
lines. NASCRACTM. calculates an RMS-averaged stress intensity factor corresponding to each
crack degree of freedom.

=—20,000 CYCLES

= NASCRACTM 20A

|-
TIP1 TIP 2

Figure 4.10.2-5. Crack Front Observed at 20,000 Cycles of Test I-2-a/2 and “Best Fit’ NASCRAC ™ Front

The crack front NASCRACTM 20A is the semi ellipse that has the same locations for
crack tip 1 and 2 and the same depth as observed for the 20,000 cycle crack front.
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—— 30,000 CYCLES
—5—- NASCRACTM 30 A

— 2 NASCRAC™M30B
- -O- NASCRAC™ 30 C

TIP 2
Figure 4.10.2-6. Crack Front Observed at 30,000 Cycles of Test I-2-a/2 and Three “Best Fit” NASCRAC™ Fronts

Crack front NASCRACTM 30A is the quarter ellipse with the same crack tip 2 location and
depth into the specimen as observed in the 30,000 cycle front. Crack front NASCRACTM 30B is
the quarter ellipse with the same crack tip 1 and crack tip 2 location as observed in the 30,000 cycle
front. Crack front 30C is a semi ellipse with the same depth into the beam and crack tip 2 location
as observed in the 30,000 cycle front. The crack tip 2 location for NASCRACTM 30C is near the
corner of the beam.
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-— 60,000 CYCLES

—f5— NASCRACT™M 60 A

—C— NASCRAC™ 60 B

TIP 2
Figure 4.10.2-7. Crack Front Observed at 60,000 Cycles of Test I-2-a/2 and Two “Best Fit” NASCRAC™ Fronts

The crack front NASCRACTM 60A is the quarter ellipse with the same crack tip 2 location
and depth into the beam as observed in the 60,000 cycle front. The crack front NASCRACTM
60B is the quarter ellipse with the same crack tip 1 and crack tip 2 locations as observed in the
60,000 cycle crack front.
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Figure 4.10.2-8. FRANC and NASCRAC Calculated SIF for 20,000-Cycle Front

The NASCRAC™ calculated stress intensity factors for front 20A were 20% greater than
FRANC calculated stress intensity factors near the middle of the crack front. Some of this
difference can be explained by RMS averaging. At crack tips 1 and 2, the two codes predicted
similar stress intensity factors.

30
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Figure 4.10.2-9. FRANC and NASCRAC ™ Calculated SIF for 30,000-Cycle Fronts

For the 30,000 cycle front, NASCRACTM calculated stress intensity factors for all three
“best fit” NASCRACTM shapes were significantly different from the FRANC calculated stress
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intensity factors near tip 1. NASCRACTM calculated stress intensity factors for fronts 30A and
30C are close to FRANC calculated stress intensity factors near tip 2. NASCRACTM calculations
for front 30B are not close to FRANC calculated stress intensity factors at either crack tip.
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Figure 4.10.2-10. FRANC and NASCRAC™ Calculated SIF for 60,000 Cycle Fronts

NASCRACTM, calculated stress intensity factors for front 60A and 60B are within
approximately 10% of FRANC calculated stress intensity factors for the 60,000-cycle crack front
near tip 2. The difference between NASCRACTM, calculated stress intensity factors for front 60A
and 60B and FRANC calculated stress intensity factors for the 60,000 cycle crack front near tip 2
is approximately 20% to 30%.

Based on the observations of Figures 4.10.2-5 through 4.10.2-10, in particular Figures
4.10.2-6 and 4.10.2-9, the following conclusion can be drawn: [Some naturally occurring
fatigue cracks cannot be modeled by elliptical or straight through cracks.]

Test series I-2-a was designed to validate NASCRACTM fatigue crack propagation with
transition capabilities. Tests from this series have been described in Section 4.5.2.3. Aspects of
these tests that specifically deal with crack transitioning will be described in this section. The
geometry of these tests are defined in Figure 4.10.2-2. The load parameters, Ap and R-ratio are
defined in Figure 4.10.2-3. Average values for these tests are given in Table 4.10.2-2.

Two transitions occur in each of these tests. The first transition occurs when crack tip 1
reaches comer a. The second transition occurs when crack tip 2 reaches corner . The numbers of
cycles before the transitions, denoted /1 and /2, are calculated by passing a quadratic polynomial
through the crack lengths observed in the two 5000 cycle intervals prior to transition and the first
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5000 cycle interval after transition. The number of cycles when the crack tip is at the corner is
interpolated from this polynomial.

Experimentally observed and NASCRACTM. predicted crack lengths for these tests are
shown in Figures 4.10.2-11 through 4.10.2-13. The crack lengths plotted in these Figures are
defined in Figure 4.10.2-2. These definitions do not coincide with NASCRACTM. defined crack
lengths, which change throughout the course of the test, and are not applicable to some observed
shapes. The NASCRACTM. analysis was performed using the input given in Table 4.10.2-3.
This is the same analysis performed for Section 4.5.2.3.

Table 4.10.2-2. Average Dimensions for Test Series I-2-a

NUMBER OF TESTS 14
DIMENSION AVERAGE VALUE UNITS
al(0) 0.254 INCHES
a2(0) 0.254 INCHES
a3(0) 0.256 INCHES
bl 2.000 INCHES
b2 1.500 INCHES
b3 2408 INCHES
b* 0497 INCHES
Ap 11.48 kips
R-ratio 0.217 -
11 55,605 CYCLES
2 107,398 CYCLES
Table 4.10.2-3. NASCRAC™ Input for Analysis of Test Series I-2-a
NASCRAC ™ INPUT VALUE CORRESPONDING
TEST DIMENSION
MODEL 702 I-2-a
GEOMETRY al 0.256 a3(0)
a2 0.254 al(0)
a3 0.254 a2(0)
W1 2.000 b1
W2 0.497 b*
W3 1.003 b2- b*
LOADING TRANSIENT 1 1000 CYCLES FATIGUE LOADS:
RANGE: EQ.B 13.82, -13.82 FIGURE 4.5.2-1
R-RATIO: 0.217 TABLE 4.5.2.2-1
BLOCK 1X TRANSIENT 1
MATERIAL 2219-T851 Al Alum3 2219-T851 Al
PROPERTIES L-T. T-L 75F #104 LAB AIR
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Figure 4.10.2-12. Experimentally Observed and NASCRACTM Predicted

Crack Length a2 Versus Cycles for Test Series I-2-a
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Figure 4.10.2-13. Experimentally Observed and NASCRAC ™ Predicted
Crack Length a3 Versus Cycles for Test Series I-2-a

NASCRACTM, predicts discontinuous crack lengths, as defined in Figure 4.10.2-2. At
each transition, the NASCRACTM, predicted shape “jumps” to the next shape, as described in
Table 4.10.1-1. This transition is assumed to occur in one cycle. At the first transition,
NASCRACTM, predicted a; increases, while a3 decreases. At the second transition,
NASCRACTM  predicted crack lengths a; and a3 increase. The transition parameter fi is intended
to be used to adjust for discontinuities at the first transition. For the simulations shown in Figures
4.10.2-10 through 4.10.2-12, fi = 1.0 was used. Using a larger valve of f: for the first transition
will decrease the amount that a3 decreases, but increase the amount that @; increases.

In practice, there will be a number of cycles in which the crack is in a “transition phase”
and cannot be described well by elliptical crack fronts. The NASCRACTM. theory manual states
that it is conservative to predict fatigue life by assuming a one-cycle transition [2]. Therefore,
increasing fi above 1.0, which increases the size of the post-transition crack, is unnecessary. Using
fi < 1.0 could compensate for cycles not predicted during the transition phase by predicting a
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smaller post-transition crack. However, the number of cycles that the real crack is in the
“transition phase” will usually be unknown. [Therefore, a crack transition factor other than
1.0 should not be used unless the user has a documented basis for the choice.]

Table 4.10.2-4. Experimentally Observed Number of Cycles before
Transltion, Series 1-2-a
1 2
({THOUSAND CYCLES) | (THOUSAND CYCLES)

Experimentally observed
lower bound, median, mean and
upper bound values of /1 and 2

are given in Table 4.10.2-4. To [TOWER BOUND a8 TR
determine how much of the MEDIAN 50.8 100.9
fatigue life was spent in the MEAN 55.6 1074

transition phase, the modified | UPPER BOUND 864 158.2

Forman parameter, C, was

varied to fit NASCRACTM. predicted /1 to the four experimentally observed values of /1.
NASCRAC™, predicted /1 and I2, as functions of C are shown in Figure 4.10.2-14. Except for
transient 1, which was reduced to 200 cycles to allow better resolution of NASCRACTM predicted
transitions, all other NASCRACTM. input was the same as that given in Table 4.10.2-3. Table
4.10.2-5 shows the values of C that produced the four desired values of NASCRACTM, predicted
i, and the corresponding NASCRACTM. predicted /2. This fit compensates bias in
NASCRACTM predictions. The values of C given in Table 4.10.2-5 are not intended to be true
upper bound, mean, median or lower bound values of the modified Forman parameter. Rather,
these are values that produced the desired NASCRACTM. predictions for this test series.

120 -
100 NASCRACTM-PREDICTED L,
80
e 1
d 50-_'
s 4
40 + NASCRACTM.PREDICTED L,
20
]
0
08 098 1 11 12 13 14 15 16 1.7 1.8
MODIFIED FORMAN PARAMETER C ( E-8 )

Figure 4.10.2-14. NASCRAC™ Predicted 1 and 22 as Functions of Modified Forman Parameter, C

Table 4.102-5 NASCRAC ™ Predicted /1 and 12 for Various Values of Modified Forman parameter, C

C i1 12 DIFFERENCE FROM OBSERVED (2
(THOUSAND (THOUSAND (THOUSAND (% of
CYCLES) CYCLES) CYCLES) OBSERVED [2)
1.788E-8 41.8 53.6 28.1 34
1.475E-8 50.8 652 35.2 35
1.350E-8 55.6 712 36.2 34
0.868E-8 86.4 110.8 474 30

4-194




If NASCRACTM  predicted /1 matches the experimentally observed /1, it was assumed that
the major source of error in NASCRACTM. predicted /2 was the cycles not counted during the
transition phase. Therefore, comparing NASCRACTM. predicted /2 with the corresponding
experimentally observed /2 provided an estimate of the number of cycles spent in the transition
phase. For the four sets of /1 and X, the absolute difference between the NASCRACTM. predicted
and experimentally observed /2 varied. However, the difference between NASCRACTM. predicted
and experimentally observed 22 was between 30 and 35% of the experimentally observed /2 for all
four cases. Based on this observation, the following conclusion can be made: [Approximately 30
to 35% of the experimentally observed cycles before the second transition in Test Series I-2-
a was spent in the “transition phase” of fatigue life that is not modeled by NASCRACTM]

4.10.3 REFERENCES FOR SECTION 4.10

1. NASCRACIM User's Manual, Failure Analysis Associates, prepared for NASA/Marshall
Space Flight Center, Palo Alto, CA, 1989.

2. NASCRACIM Theory Manual, Failure Analysis Associates, prepared for NASA/Marshall
Space Flight Center, Palo Alto CA, 1989.
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411 OVERLOADS

This section describes the verification and validation testing of NASCRAC™’s [farigue
crack growth retardation]. Fatigue crack growth models for constant amplitude loading can be
insufficient to model crack growth for spectrum loading due to the increased size of the plastic
zone surrounding the crack tip following an overload. Two models, Wheeler and Willenborg, are
incorporated into NASCRAC™ to model crack growth due to varying amplitude load cycles.

4.11.1 VERIFICATION OF NASCRAC™ FATIGUE CRACK GROWTH
RETARDATION CAPABILITY

In the Wheeler
model, retardation is
determined using a ratio
of the current plastic zone "
and the plastic zone due —-——
to the overload. The
Wheeler model [2] is
depicted in Figure " a9
4.11.1-1 where ag is the
crack length at the time ( da
of the overload, rp is the AN retarded dN
plastic zone radius . n K2 - To -
(diameter) caused by the = _—a) r=

. apg+Tg-
overload, a is the current

crack length, and r is the
plastic zone radius Figure 4.11.1-1. Wheeler Retardation Model

—
—
—
— —

—
presp——
— —
, -

2
n Co,

corresponding to the current crack length and load. The Wheeler model assumes that the
calculated crack growth rate da/dN (calculated using a standard da/dN equation such as the Paris
equation) will be reduced by a factor ¢" where ¢ is the ratio of the current plastic zone radius to the
remaining overload plastic zone radius (ag + 1 - a) and n is a material dependent parameter. When
¢ is calculated to be greater than one, i.e., when the current plastic zone radius reaches or exceeds
the boundary of the overload plastic zone, ¢ is set equal to unity and retardation ceases until another
overload occurs. This model can predict crack growth retardation but not acceleration.

The Willenborg model uses effective stress intensity values and an effective R ratio to
predict retarded crack growth [1]. Figure 4.11.1-2 displays the Willenborg concept. In Figure
4.11.1-2, rreq is the plastic zone radius required to reach the overload plastic zone boundary, ap is
the crack length at the time of the overload, a is the current crack length, and r is the plastic zone
radius corresponding to the current crack length and load.
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The model is based on determining the stress intensity value, Kreq, required for the current
plastic zone radius to reach the overload plastic zone boundary. Kreqis used to calculate a stress
intensity reduction factor K,.4. This reduction factor is subtracted from the current K to determine
an effective K, i.e., Kegr for both maximum and minimum values of K in a cycle. If an effective
stress intensity value is calculated to be less than zero, it is set equal to zero. With this approach,
AKfr equals AK unless Kpjp, is set to zero. Using Kefr.max and Kes.min » an effective R ratio can
be calculated. The effective values are used to calculate the retarded crack growth rate da/dN using
a standard da/dN equation. In the Willenborg model, if the Paris equation is used to model da/dN,
retardation effects are only evident when the zero assumption for Kpax_efrand Kmin_eff 15 invoked.
This is because the Paris equation does not have an R dependency.

—
e
—
e .

.~
2

K
Treq= 9+ Tp- 2 =&";q

nC o,
Kred= Kmax-req' K max

da

Kmax-eff = Kmax - Krea= 2K pax - Kmax‘req , (Ia'ﬁ reta.rded= quax-ef‘

Figure 4.11.1-2. Willenborg Retardation Model

Table 4.11.1-1 presents results of a comparative study between retardation predicted by
NASCRAC™ and an in-house FORTRAN code. The FORTRAN code included the Wheeler and
Willenborg retardation models from [1]. In the study, the crack growth rate was calculated with
the Paris equation where the Paris coefficient Cparis was 1.07(10-8) and the Paris exponent mpgys
was 2.897. The Wheeler coefficient Cwheeler Was set to 2.0 and the Wheeler exponent,
Mwheeler-Was set to 1.3. The loading block consisted of a uniform 13.0 ksi tensile load followed
by 100 cycles of a uniform 10 ksi tensile load. All loads had an R-ratio of 0. The specimen was a
single edge crack in a plate (configuration 203 in NASCRAC™) with an initial crack length of
0.5", a plate width of 10.0", and a plate thickness of 1.0". The assumed material was 2219-T851
aluminum with a yield strength of 53 ksi, a Young's modulus of 10000 ksi, and a Poisson's ratio
of 0.33. One difference between NASCRAC™ and the reference mode!l was in the expression for
plastic zone radius (r). The reference did not include m in its expression for r whereas
NASCRAC™ included = in its expression. In all likelihood, the reference assumes = is
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incorporated into Cwheeler- In the study, identical values of Cwheeler and Nwheejer Were used in
NASCRAC™ and the FORTRAN code and the FORTRAN code included 7 in its r expression.

Table 4.11.1-1. Crack Retardation Results for NASCRAC™ and a FORTRAN Code

CYCLES CRACK LENGTH a CRACK LENGTH a CRACK LENGTH a
NO LOAD INTERACTION | WHEELER RETARDATION | WILLENBORG RETARDATION
NASCRAC™ | FORTRAN | NASCRAC™| FORTRAN NASCRAC™ FORTRAN
101 0.5025 0.5025 05013 0.5013 0.5010 0.5010
1010 0.5254 0.5254 05136 0.5136 0.5098 0.5099
2020 0.5528 0.5528 05277 0.5278 0.5200 0.5201
4040 0.6148 0.6148 05579 0.5582 0.5412 0.5415
10100 0.8872 0.8872 0.6673 0.6681 0.6140 0.6150
15150 1.322 1322 0.7878 0.7895 0.6877 0.6895
17473 1.689 1.689 0.8560 0.8583 0.7265 0.7289
20200 na na 0.9500 0.9532 0.7770 0.7801

4.11.2 VALIDATION OF NASCRAC™ ALGORITHM

In a previous effort at validating of the Wheeler and Willenborg retardation models,
Schijve[3] concluded that "no systematic agreement with test results” was found. He also states
that the models omit crack closure and accelerated growth effects. In general, Schijve concluded
that the Wheeler and Willenborg models are simplistic and do not capture all the variables
necessary to describe crack retardation. Broek[1] describes the models in detail and presents a
favorable Wheeler/test comparison for a Wheeler exponent m = 1.3. Two series of tests are used
to test the validity of NASCRAC™-crack growth retardation models; test series I-2-b and test
series Il-a. These tests are described in the following subsections.

4.11.2.1 Periodic Overloads

The geometry for test series I-2-b is given in Figure 4.11.2.1-1. The parameters that
describe the load history of tests in this series are defined in Figure 4.11.2.1-2. This load series
was repeated throughout the test. Average values for this test series are given in Table 4.11.2.1-1.

Two transitions occur in this test series. The first transition occurs when crack tip 1
reaches the corner , as defined in Figure 4.11.2.1-1. The second transition occurs when crack tip
2 reaches corner B. The numbers of cycles before the two transitions are denoted /1 and /2. To

calculate these values, a second order polynomial is passed through the crack lengths measured in
the two observations prior to transition and the crack length measured in the first observation after
transition. The number of cycles at which the crack tip reached the corner of the beam is
interpolated from this polynomial.

Three NASCRAC™ analyses of Test Series I-2-b were performed. The input for these
analyses is summarized in Table 4.11.2.1-2. In the first simulation, crack growth retardation was
not accounted for. The crack growth predicted in the one overload cycle was negligible compared
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to the crack growth predicted in the 999 nominal cycles. The other two analyses incorporated the
Wheeler and Willenborg models, respectively, to model crack growth retardation.

Experimentally-observed
and NASCRAC™-predicted
crack lengths a;, a2 and a3 are
plotted versus cycles in Figures
4.11.2.1-3, 4.11.2.1-4 and L
4.11.2.1-5. The definitions of

crack lengths used in these I'_“’_’I
comparisons are those given in @
Figure 4.11.2.1-1.  These |:
definitions do not correspond e
with NASCRAC™ definitions
of crack length, which change
throughout the test and are not TP 1 v
applicable to some of the ‘—.‘
experimentally-observed crack
shapes. This issue is addressed
in greater detail in the Section
4.10.

TIP 2

SECTIONA-A
Figure 4.11.2.1-1. Geometry for Test Series 1-2-b

LOAD

P nom min

999 CYCLES 1CYCLE
< >
P

P
nom min
R= A Pryminal = Pnom min * Pnom max

TIME
Figure 4.11.2.1-2. Definition of Load History for Test Series I-2-b
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Table 4.11.2.1-1. Average Dimensions for Test Series I-2-b

NUMBER OF TESTS 2
DIMENSION AVERAGE VALUE UNITS
al(0) 0.254 INCHES
a2(0) 0.254 INCHES
a3(0) 0.248 INCHES
bl 2.000 INCHES
b2 1.500 INCHES
b3 2421 INCHES
b* 0.508 INCHES
Apnominal 11.51 kips
R-ratio 0.215 -
Poverload 19.45 kips
I3 92,281 CYCLES
12 161,921 CYCLES

Table 4.11.2.1-2. NASCRAC™ In

put for Analysis of Test Series I-2-b

NASCRAC™ INPUT VALUE CORRESPONDING
TEST
DIMENSION
Model 702 I-2-b
GEOMETRY al 0.248 a3(0)
a2 0.254 al(®)
a3 0.254 a2(0)
w1 2.000 b1
w2 0.508 b*
w3 0.992 b2 -b*
LOADING TRANSIENT 1 999 CYCLES LOAD HISTORY
RANGE: EQ.B 13.93,-1393 FIGURE 4.11.2.1-2
R-RATIO: 0.215 TABLE4.11.2.1-1
TRANSIENT 2 1CYCLE
MAX:EQ.B 23.54,-23.54
MIN: EQ.B 3.63,-3.63
BLOCK 1 X TRANSIENT 1
1 X TRANSIENT 2
MATERIAL 2219-T851 Al ALUM3 2219-T851 AL
PROPERTIES L-T & T-L 75F #104 LAB AIR
SIGYS 53
YOUNGS 10,000
POISSN 033
NWheeler 13
Cwheeler 2.0
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Figure 4.11.2.1-5. Experimentally-Observed and NASCRAC™-Predicted
Crack Length a3 Versus Cycles for Test Series I-2-b

Except for the overload, this test series is similar to Test Series I-2-a. For a given number
of cycles, the crack lengths observed in test series I-2-b were less than the smallest cracks
observed in test sereis I-2-a. This observation indicates that crack retardation occurred in test series
I-2-b.

The NASCRAC™ analyses that use the Wheeler or Willenborg retardation models are

collectively referred to as the retarded NASCRAC™ analyses. The NASCRAC™ analysis that
did not incorporate retardation is referred to as the non-retarded NASCRAC™ analysis. The two
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retarded NASCRAC™ analyses predict the first transition within 7000 cycles of each other, and
the second transition within 11,000 cycles. The two retardation models do not necessarily predict
similar crack growth for all spectrum load histories.

The retarded NASCRAC™.-predicted crack growth rates are close to the experimentally-
observed crack growth rates for the first approximately 60,000 fatigue cycles. As crack tip 1
approaches corner «, as defined in Figure 4.11.2.1-1, the experimentally-observed crack growth
rate increases. The retarded NASCRAC™ analyses do not predict this increased crack growth
rate. As a result of this discrepancy, the non-retarded NASCRAC™-predicted /1 is closer to
experimentally-observed /1 than the two retarded NASCRAC™-predicted /1 are.

Following the second transition, retarded NASCRAC™-predicted crack length a; catches
up to the experimentally-observed crack length a;. The closeness of retarded NASCRAC™-
predicted and experimentally-observed crack lengths a; following the second transition should be

considered the result of compensating errors. NASCRAC™ transition methodology is analyzed
in Section 4.10.

The effect of yield 200 =

stress on NASCRAC™- 180 F TN T I s et s .
predicted 12 and /2 was 160 _f;___________________________._.____':_'_'.'_'_'._
studied. Except for yield ja0 3 TTTTTNTETm e LT
stress, the input for the 120 3

analyses used in this study gwo ]

were the same as that | 9 gg -

given in Table 4.11.2.1-1. | © go 3

The NASCRAC™- 403

predicted /1 and /2 are 2oJ:

shown as functions of 2; M S IR S S B |
ield stress in Figure
2112.1-6. In these YIELD STRESS (ks)

analyses, the Willenborg NASCRAC™ PREDICTED

model is more sensitive to WHEELER b _._’_2_.

changes in yield stress

than the Wheeler model. WILLENBORG T B

NO RETARDATION

Figure 4.11.2.1-6. Sensitivity of NASCRAC™-Predicted Life to Yield Stress
In summary, the following conclusions regarding these tests can be made:

» Retardation affects the crack growth rate in this test series.
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= At some parts of the fatigue life, both the Wheeler and Willenborg models predict crack
growth better than the nonretarded crack growth model does.

« Discrepancies between crack growth rates predicted with the Wheeler and Willenborg
retardation models and experimentally-observed crack growth rates result in
NASCRAC™-predicted number of cycles before the first transition, /1, approximately 60%
greater than the experimentally observed /1.

41122  Single Overload

Test series III was designed to test NASCRAC™ proof test logic. This test series
consisted of three stages. Stage I was constant amplitude fatigue loading, and is described in
Section 4.5.2.4. Stage II was a near-failure proofload, and is described in Section 4.8. Fatigue
crack growth observed in stage 3 is described in this subsection. The tests as a whole are
described in section 4.7. The retardation of fatigue crack growth in stage 3 due to the proofload in
stage 2 is discussed in this subsection.

The geometry for this test series is given in Figure 4.11.2.2-1. Parameters that define the
load history are defined in Figure 4.11.2.2-2. The fatigue loads in stage 3 were applied with the
four point bend configuration. In some tests, the proofload was applied in a three point bend
configuration. In the remaining tests, the proofload was applied in a four point bend configuration.
The magnitude of the applied load, P, varied. The size of the crack when the proofload was
applied also varied. For the purposes of this subsection, the most consistant measure of the
magnitude of the proofload was assumed to be the NASCRAC™-calculated K at crack tip 2.

Figure 4.11.2.2-1. Geometry for Test Series 11I-a
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Figure 4.11.2.2-2. Definition of Load History for Stages 2 and 3 of Tests Series III-a

Table 4.11.2.2-1. Average Dimensions for Stages 2 and 3 of Test Series IIl-a

NUMBER OF TESTS
DIMENSION AVERAGE VALUE UNITS
al(STAGE 2) 0.795 INCHES
a2(STAGE 2) 1.160 INCHES
3 3.001 INCHES
b2 3.001 INCHES
b3 3.001 INCHES
AP 20.89 kips
R-RATIO 0.2294 B
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CRACKTIP 1

CRACK TIP 2
Figure 4.11.2.2-3. Crack Sizes at Beginning of Stage 2 of Test Series III

Because of the large difference in crack size at the beginning of Stage 2, two standard
measures of retardation, V1 and v2, are defined.
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Figure 4.11.2.2-4. Measures of Crack Growth Retardation Following Single Overload

The procedure for calculating the two measures, as shown in Figures 4.11.2.2-3, is as
follows:

(1)  The number of cycles after the proofload, n*, where the observed crack growth rate of
tip 2 equals the crack growth rate observed at tip 2 just prior to the application of the
proofload is found. The crack length @, at this number of cycles is denoted a*.

2) The number of cycles required to grow the crack from the a; observed before the
proofload, denoted a(2) in Figure 4.11.2.2-3, 1o a* at the crack growth rate observed
prior to the proofload is calculated. This number is subtracted from n* to obtain vl.

4) The number of cycles required to grow the crack from the a2 observed imediately after
the proofload, denoted a(3) in Figure 4.11.2.2-3, to a*, at the crack growth rate
observed prior to the prrofload is calculated. This number is subtracted from n* to
obtain v2.

Other measures of retardation could have been defined. For instance, the same procedure
could be followed for crack tip 1. Different definitions of retardation would change the number of
cylces of retardation calculated. However, the trends observed for this definition would be similar
for many other definitions of retardation.

In this test series, the variation in crack sizes and applied proof loads preclude useful

discussion of test averages. Therefore, a NASCRAC™ analysis was performed for each test in
this series. These analyses are summarized in Table 4.11.2.2-2. The loading in the analyses
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consisted of three components: 1) the last fatigue cycle in stage 1, which was used to calculate the
pre-proof load crack growth rate, 2) the proof load applied to the test, and 3) the average stage 3
fatigue loads applied to NASCRAC™-predicted failure.

Table 4.11.2.2-2. Input for NASCRAC™ Analsyses of Retardation in Stage 3 of Test Series IIl-a

NASCRAC™ INPUT VALUE CORRESPONDING
TEST DIMENSION
MODEL 605 I-a
GEOMETRY al VARIED al
a2 VARIED a2
W1 3.001 bl
W2 3.001 b2
LOADING TRANSIENT 1 1CYCLE STAGE 1 LOADING
RANGE: EQ.B 14.06, -9.37
R RATIO 0.2319
TRANSIENT 2 1CYCLE STAGE 2 LOADING
MAX:Eq.B VARIED FIGURE 4.11.2.2-2
R 0
TRANSIENT 3 5000 CYCLES STAGE 3 LOADING
RANGE: Eq. B 14,01, -9.34 FIGURE 4.11.2.2-2
R 0.2294 TABLE 4.11.2.2-1
BLOCK 1 X TRANSIENT 1
1 X TRANSIENT 2
TRANSIENT 3
REPEATED TO
FAILURE
MATERIAL 2219-T851 Al ALUM3 2219-T851 Al
PROPERTIES L-T, T-L 75F #104 LAB AIR

Due to experimental erors, v1 and v2 were not available for all tests in this series. For
each test in which v1 and V2 were available, experimentally-observed values of v1 and V2 were
within 7000 cycles of each other and NASCRAC™-predicted values of v1 and v2 were within
600 cycles of each other. Therefore, only v1 will be discussed in the remainder of the section.

In Figure 4.11.2.2-4, the two retardation measures are plotted versus applied proofload in
terms of the NASCRACTM calculated stress intensity factor at tip 2, K(2). The various specimens
have different initial crack sizes, which would affect any relationship between applied K and
retardation.
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Figure 4.11.2.2-S. Retardation Versus Maximum K2 Applied During Overload

The proof tests were designed to investigate remaining life following a near-ultimate-

capacity-overload. For this geometry, the failure load for the crack sizes tested was near or at the
load required for gross section plasticity. Therefore, many of the experimental observations might
be out of the range of LEFM. The following conclusions were reached:

 In these tests, a single proofload retards crack growth significantly.

o The Wheeler retardation model underpredicts the retardation observed in test series Ill-a. It

is likely, however, that the proofloads applied in this test series were large enough to
invalidate LEFM.
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4.12 ELASTIC PLASTIC STRESS REDISTRIBUTION

This section describes verification and validation testing of the NASCRAC™ modeling
capability for elastic-plastic stress redistribution and fatigue crack propagation through the resulting

residual stress field.

4.12.1 NASCRAC™ VERIFICATION

Determine von Mises ¢
from initial o field

Cep eepusing Neuber
or equivalent energy

Y

Load = (AG) A = (Gep- Ge) A

Y

Distribute load to unyielded
Cross section

Y

Recompute von Mises o,

q

Convert von Mises G
to stress field

!

Calculate K, da/dN

i

Figure 4.12.1-1. Flow Diagram of the Elastic-Plastic Stress Redistribution
Algorithm In NASCRAC™

The NASCRACTM
procedure for elastic-plastic
stress redistribution is
summarized in Figure 4.12.1-
1. Von Mises equivalent
stresses are calculated from the
known elastic stress field.
Then, either the Neuber notch
or equivalent energy method is
used to find elastic-plastic
stresses and strains. The
difference between the elastic
and the elastic-plastic stress at
the most stressed point is
multiplied by an area to obtain
a load, which 1is then
redistributed to the remaining
unyielded cross section. The
procedure is repeated until a
new von Mises equivalent
stress field, which does not
exceed the yield stress at any
point, is obtained. The
equivalent stresses are then
converted back to three
dimensional stresses. Once the
redistributed stress field is
found, stress intensity factors
due to combined residual
stresses and cyclic fatigue loads

are calculated, and the fatigue crack propagation algorithm is implemented.
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4.12.1.1 Limitation of Algorithm

Stress intensity factor calculation for arbitrary stress fields is essential for modeling crack
propagation through a residual stress field. Therefore, elastic-plastic stress redistribution and
crack propagation through a residual stress field in NASCRACTM. may be performed only
with models for which weight functions are available.

The Neuber notch and equivalent energy methods of elastic-plastic stress redistribution
were designed for use near notches; therefore, the initial choice of geometry to test the
NASCRACT™™. stress redistribution capability was a plate containing a hole. The appropriate
NASCRAC™. model for this geometry is 208. However, this configuration does not incorporate
a weight function. Therefore, a single edge crack in a plate (203) with bending loads was chosen
as an alternate geometry.

4.12.1.2 Suggested Change in NASCRACTM Code

A coding error was found in the subroutines NEUBER and NEUTWO, which may cause a
divide-by-zero during execution of NASCRAC™ This can be avoided by changing the original
source code of NEUBER shown in Figure 4.12.1.2-2 to a proposed modification shown in Figure
4.12.1.1-3. An equivalent modification should be made to NEUTWO.

IF (iway .ne. 1) GO TO 330
c
¢ Find root of Neuber-Ramberg-Osgood set of equations
c

dues = es - ssyi(i) + sy

IF ((dues .gt. 0.0) .and. (zs .gt. 0.0) GO TO 71

ps = es
pss = (0.39*sy
GO TO 72

71 CONTINUE
CALL rfind(pss,dues, sy, xn, xk)
ps = pss - sy + syyi(i)

72 CONTINUE

c
c Using a weighted average of the elastic (nu) and plastic (nuplas)
c Poisson's ratios, we obtain
c
nueff = (nu*eel + nuplast*epl)/(eel + epl)

pmat (8) = nueff

eplas = (eel+epl)/e
c

Figure 4.12.1.1-2. Original Source Code for Subroutine NEUBER with Potential Error Highlighted
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IF (iway .ne. 1) GO TO 330
c
¢ Find root of Neuber-Ramberg-Osgood set of equations
c

dues = es - ssyi(i) + sy

IF ((dues .gt. 0.0) .and. (zs .gt. 0.0) GO TO 71
pPsS = es

pss = 0.39*sy

GO TO 72

71 CONTINUE
CALL rfind(pss,dues, sy, xn, xk)
pPs = pss - sy + syyi(i)

72 CONTINUE

Using a weighted average of the elastic (nu) and plastic (nuplas)
Poisson's ratios, we obtain

WTR 9/29/93 SET nueff = nu IF TOTAL STRAIN = 0.0

NnDaOoOoOao0

IF ((eelt+epl) .eq. 0.0) THEN
nueff = nu

ELSE

nueff = (nu*eel + nuplas*epl)/(eel + epl)
END IF
pmat (8) = nueff

eplas = (eel+epl)/e

Figure 4.12.1.1-3. Proposed Change in Subroutine NEUBER to Prevent Potential Runtime Error

4.12.2 VALIDATION OF THE ELASTIC-PLASTIC STRESS REDISTRIBUTION
CAPABILITY

Test series I-3-a was designed to validate NASCRACTM’s farigue crack propagation
through a residual stress field capability. Four tests were performed in this test series. The
geometry for these tests is shown in Figure 4.12.2-1. The crack length is identified with two
different variables (a1, @2) because the crack length was not necessarily the same on both faces of
the beam during the tests. Proofloads were applied to two of the test specimens in this series
before the initial notch was cut. A typical load spectrum for the tests is shown in Figure 4.12.2-2.
The proofloads were designed to induce a residual stress field in the beam. The two remaining
tests were used as controls. The dimensions for the four tests are summarized in Table 4.12.2-1.
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Table 4.12.2-1. Parameters for Test Series I-3-a

PARAMETER 1-3-a/1 1-3-af2 1-3-a/4 1-3-a/6 UNITS
bl 1.990 1.991 1.994 2.000 INCHES
b2 0.650 0.653 0.656 0.652 INCHES
b3 2.397 2.409 2.360 2.407 INCHES

al(0) 0.013 0.018 0.004 0.003 INCHES
a2(0) 0.013 0.019 0.003 0.003 INCHES
PROOF 2 0 2 0 CYCLES
LOADS 20 n.a. 21.28 n.a. kips
Apfar 6.249 6.258 6.284 6.394 kips
R-RATIO 0.2159 0.2237 0.2109 0.2048

Experimentally-observed crack lengths versus cycles for tests 1-3-a/1 and [-3-a/2 are
shown in Figure 4.12.2-3. Test I-3-a/1 included two proof cycles, as shown in Table 4.12.2-1.
No proof cycles were applied to test I-3-a/2. The results of three NASCRAC™ analyses and one
NASA/FLAGRO analysis are also shown in Figure 4.12.2-3. The three NASCRAC™ analyses
included one where no proof loads were applied; one where two proof cycles were applied and
plane strain assumed; and one where two proof cycles were applied and plane stress assumed.
Table 4.12.2-2 lists the inputs for the three analyses. The NASA/FLAGRO analysis was
performed using input given in Table 4.12.2-3. Proofloads were not considered in the FLAGRO
analysis. The NASCRAC™-predicted crack length at failure is shown to be significantly less than
that predicted by FLAGRO or experimentally-observed. This is due to the output option used for
the NASCRACT™ analyses. Crack length was printed only once every thousand cycles. Near
failure, the crack is propagating quickly. Therefore, in the 1000 cycles (or less) between the last
output and actual NASCRAC™-predicted failure, the predicted crack can grow significantly but
the total number of fatigue cycles before failure would not change by more than 1000 cycles.
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Figure 4.12.2-3. Predicted and Experimentally Observed Crack Lengths vs Cycles for Tests 1-3-a/1 and 1-3-2/2
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Table 4.12.2-2. NASCRAC Input for Simulation of Test 1-3-a/1
NASCRAC INPUT VALUE CORRESPONDING
TEST
DIMENSION
MODEL 203 [-3-a/1
GEOMETRY w 1.990 b1
a 0.013 ( al(0) + a2(0) )2
LOADING PROOFLOADS 2 CYCLES PROOFLOADS
max ob elast 55.87 ksi FIGURE 4.10.3.2-2
min ob elast 0 ksi TABLE 4.12.2-1
FATIGUE LOADS REPEATED TO FAILURE FATIGUE LOADS
max ob elast 22.264 ksi FIGURE 4.10.3.2-2
min b elast 4.806 ksi TABLE 4.12.2-1
MATERIAL 2219-T851 Al ALUM3 2219-T851 AL
PROPERTIES L-T. T-L 75F #104 LAB AIR
SIGYS 53
YOUNGS 10000
POISSN 033
N 13
D 85.48
ANALYSIS PARAMETERS IBOUND 0 PHYSICS OF
PHEIGHT 0 (default) E-P STRESS
REDISTRIBUTION EQUIVALENT ENERGY REDISTRIBUTION
METHOD
Table 4.12.2-3. NASA/FLAGRO Input for Simulation of Test 1-3-a/1
FLAGRO INPUT VALUE CORRESPONDING
TEST
DIMENSION
MODEL TCO02 1-3-a/1
GEOMETRY w 1.99 bl
t 0.65 b2
[ 0.013 (al(0) + a2(0))/2
LOADING FATIGUE LOADS REPEATED TO FATIGUE LOADS
FAILURE
max Ob elast 22.46 ksi FIGURE 4.10.3.2-2
min b elast 4.81 ksi TABLE 4.12.2-1
MATERIAL 2219-T851 2219-T851 Al
PROPERTIES Plt & Sht L-T LAB AIR

Figure 4.12.2-4 shows experimentally-observed and NASCRAC™-predicted crack lengths
vs cycles for test I-3-a/4 . Two proofloads were applied to this test specimen. The NASCRAC™
predictions were obtained using the input given in Table 4.12.2-4. No proofloads were applied in
the NASCRACT™ simulation. Test I-3-a/6 was similar to test I-3-a/4, except no proofloads were
applied. Test I-3-a/6 consisted of 2,600,000 fatigue cycles. The test was stopped before fatigue
crack initiation was observed. Because crack initiation had such a significant effect on the fatigue
life of test I-3-a/6, it is likely that crack initiation also had a significant effect on the fatigue life of
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test I-3-a/4. If crack intiation took a significant number of cycles in test 1-3-a/4, the crack
propagation would no longer match NASCRAC™ predicions. Given the fatigue life of test I-3-
a/6, it appears that the apparently correct NASCRAC™ prediction of test I-3-a/4 is due to
offsetting errors caused by ignoring crack intiation and modeling small crack growth incorrectly.
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Figure 4.12.2-4. Experimentally-Observed and NASCRAC ™ .Predicted Crack Lengths vs Cycles for Test 1-3-a/4

Table 4.12.2-4. NASCRACT™ Input for Analysis of Test 1-3-a/4

NASCRAC INPUT VALUE CORRESPONDING
TEST
DIMENSION
MODEL 203 1-3-a/4
GEOMETRY W 1.994 INCHES b
a 0.0035 INCHES (al(0) + a2(0) )2
LOADING FATIGUE LOADS REPEATED TO FATIGUE LOADS
FAILURE
RANGE: EQ.B 17.06, -17.11 FIGURE 4.10.3.2-2
R-RATIO: 0.2109 TABLE 4.12.2-1
MATERIAL 2219-T851 Al ALUM3 2219-T851 AL
PROPERTIES L-T, T-L 75F #104 LAB AIR
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The test results depicted in Figures 4.12.2-3 and 4.12.2-4 highlight several issues
associated with the elastic plastic stress redistribution model in NASCRAC™. These issues
include:

» Plane stress and plane strain assumptions can have significant effects on predicted stress
redistribution and crack growth rates.

o Crack initiation and small crack effects (both ignored by NASCRAC™) might have a
significant effect on fatigue life.

» The accuracy of calculated residual stresses might effect the predicted fatigue life.
To quantify these issues sensitivity analyses were conducted. Results from these analyses

are reported in the following subsections.

4.12.2.1 itivity of A l Input Parameter

Analyses were performed to determine the sensitivity of NASCRAC™-predicted life to
various NASCRAC™ input parameters. The base input for the analyses discussed in this section
is given in Table 4.12.2.1-1.

Table 4.12.2.1-1. Base Input for NASCRAC™ Sensitivity Analysis

NASCRAC INPUT VALUE
MODEL 203
GEOMETRY w 1.990
a 0.012
LOADING OVERLOQADS 2CYCLES
max ob elast 57.66 ksi
min ob elast 0 ksi
FATIGUE LOADS REPEATED TO
FAILURE
Acb elast 17.760 ksi
R-ratio 0.204
MATERIAL 2219-T851 Al ALUM3
PROPERTIES L-T, T-L 75F #104
SIGYS 50.00
POISSN 033
N 13.00
D 85.48
ANALYSIS IBOUND 0
PARAMETERS
PHEIGHT 0 (default)
REDISTRIBUTION EQUIVALENT ENERGY
METHOD
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Both plane strain and plane stress analyses were performed in this study. In test series I-3-
a, and in many practical situations, the actual state of stress varies through the depth of the
structure, and neither of the two-dimensional constraint conditions describe the state of stress
accurately.

The first | 160000
parameter studied was | & 1 T T -
yield stress. | 140000 -
NASCRAC™. o ]
. . R .
predicted fatigue life is $12°°°° ]
plotted as a function of | o ]
. R 100000 -
yield stress in Figure | 3 ]
4.12.2.1-1. All other | 8 ]
. - -
input was the same as | Q 80000
that given in Table a :
£ 60000
4.12.2.1-1. The :.- ]
manufacturer’s testing ’2 40000 ;
indicates a uniaxial | & ]
. b :
0.2% offset yield < 20000 — — PLANE STRAIN
strength that ranges 1
from 49.9 to 55 ksi. 0 PLANE STRESS
: : . T T T T | I JAALALEN BLAMRLE SABLELE BMAMY
With this range of yield 40 42 44 46 48 50 52 54 56 58 60
stress, the YIELD STRESS (ksl)

NASCRAC™-
predicted life can vary
from 78,000 to 110,000 cycles for plane strain and 120,000 to 150,000 cycles for plane stress. A
uniaxial yield strength will not necessarily be a sufficient predictor of yielding for a three
dimensional stress field. In the region of material where yielding occurs, a complicated, three-
dimensional state of stress occurs and redistribution is governed by a multi-axial flow rule, only
one parameter of which is the uniaxial yield strength. Furthermore, the actual constraint conditions
will vary across the beam, and will likely approach plane stress near the free surfaces and plane
strain away from the free surfaces. Considering these uncertainties, it was difficult to determine
what the “correct” input should be before comparing NASCRAC™.-predictions with experimental
observations The variation of NASCRAC™-predicted life within the bounds of reasonable yield
stress and planar constraint conditions must be considered when performing NASCRAC™
elastic-plastic stress redistribution calculations.

Figure 4.12.2.1-1. Effect of Yield Stress on NASCRAC-Predicted Life

The second sensitivity study forcused on the Ramberg-Osgood parameters. The Ramberg-
Osgood equation models the two-dimensional stress-strain relationship of materials. The form of
this equation is given in Equation 4.12.2.1-1.

N
(o) C
=—+| = . (4.12.2.1-1
€ E+(D) eq. (4.12.2.1-1)
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For these analyses, the parameter D was a dependent variable. It was adjusted according to
the value of N to allow for 0.002 plastic strain at yield stress. The results of these analyses are
shown in Figure 4.12.2.1-2. In these analyses, the Ramberg-Osgood parameters do not affect the
predicted life much for plane stress analyses but do have an affect on plane strain analyses.
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Figure 4.12.2.1-2. Effect of Ramberg-Osgood Parameter, N, on NASCRAC-Predicted Life

The final parameter chosen for a sensitivity study was the NASCRAC™ parameter,
PHEIGHT. This parameter is used to determine the gradient with which stresses are re-
distributed. NASCRAC™ redistributes residual stresses based on the stress gradient near the edge
of a hypothetical elliptical hole in a plate with far-field uniform stresses. PHEIGHT determines the
shape of the ellipse used to calculate this stress gradient. The steepest allowable gradient
corresponds to the stress gradient near the edge of a circular hole. Therefore, increasing
PHEIGHT beyond a certain length has no effect on predictions; a circular hole is used instead.
Likewise, decreasing PHEIGHT below a minimum length has little effect on the predictions. As
PHEIGHT becomes small, the hypothetical ellipse approaches a slit parallel to the direction of
stress. The stress gradient at the edge of this ellipse approaches zero as the ellipse approaches a
slit. The analyses in this sensitivity study in which PHEIGHT was greater than 0.02 inches
predicted a fatigue life within 10% of the life predicted using the default setting for PHEIGHT.
These results are displayed in Figure 4.12.2.1-3.
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Figure 4.12.2.1-3. Effect of PHEIGHT on the NASCRACTM Life Prediction

4.12.2.2 Predicted vs Observed Fatigue Crack Growth Rates for Small Cracks

The similarity of the crack lengths observed in tests I-3-a/1 and /2 indicates little to no
retardation occurred due to the residual stress field in test I-3-a/1. Therefore, this section will
compare crack growth rates predicted by NASCRAC™ and NASA/FLAGRO without accounting
for retardation. A more thorough analysis of test I-3-a/2 is performed in Section 4.5.

The majority of the difference between crack lengths observed in test I-3-a/2, and those
predicted by FLAGRO and NASCRAC™ (without proofloads) can be attributed to the difference
between predicted and observed crack growth rates when the crack length is less then 0.034 long.
This crack length corresponds to a crack length 0.02 inches longer than the initial notch. This
region is shaded in Figure 4.12.2-3. Between 57% and 62% of the NASCRAC™-predicted
fatigue life for this test occurs when the crack is less than 0.034 inches long. For tests I-3-a/1 and
/2, the crack lengths are within the small crack region for approximately 40% to 50% of the
fatigue life. Experimentally observed and NASCRAC predicted crack growth rates appear to
coincide well for given crack lengths greater than 0.034 inches.

It has been observed [1] that small cracks can propagate much faster than larger cracks
with the same stress intensity factors applied. This is known as the small crack effect. For
aluminum, cracks that are less than 0.02 inches beyond an initial notch can be considered small.
The small crack effect appears to have a significant effect on the total fatigue life of specimens in
this test series.
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Two proofloads were applied to test I-3-a/4. It was anticipated that these loads would
retard fatigue crack growth. However, the experimentally observed crack lengths matched crack
lengths predicted by NASCRAC™ without accounting for the proofloads. Test I-3-a/6, which had
no proofloads applied, consisted of 2,600,000 fatigue load cycles. Fatigue crack propagation was
not observed during this loading. Therefore, it is concluded that the fatigue life of test I-3-a/4 was
dominated by crack initiation, not retardation due to a residual stress field.

4.12.2.3 Residual Stress Field Calculations

The analyses shown in Figures 4.12.2.1-1, through 4.12.2.1-3 illustrate the potential
variation in NASCRAC™ predicted life. These figures should put the observations made in this
section into perspective; it is possible to predict “answers” that have a large range of values. In
light of the variation in predictions, the following analyses should be used to illustrate trends only.

Figure 4.12.2.3-1
shows residual stress fields
calculated using
NASCRAC™ with the input
given in Table 4.12.2-2. Both
plane strain and plane stress
analyses were considered.
The plane stress analysis
predicts a larger region of
compressive stresses than the L
plane strain analysis predicts. 0 02 04 06 08 1 12 14 16 18 2
Furthermore, the magnitude X AXIS (INCHES)
of the predicted compressive Figure 4.12.23-1. Residual Stress Fields Predicted Using NASCRAC with two

] . Different Constraint Assumptions

residual stresses is greater for

the plane stress analysis than 1
the plane strain analysis. It is
this difference in the residual
stress fields that causes the
differences in predicted crack
growth illustrated in Figure
4.12.2-3. Strain gage
measurements made during
application of the proofloads in
tests I-3-a/1 and I-3-a/4 indicate

- PLANE STRESS ANALYSIS
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the presence of a residual stress 0 005 01 015 0.2 025 03 035 04 045 05
field in the region where crack X AXIS (INCHES)
growth was anticipated. Figure 4.12.2.3-2. Residual Stress Fields Predicted with NASCRAC™ Plane

Strain Analysis, with two Modifications to aAccount for Initial Notch
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Crack Length a fields shown in

Figure 4.12.2.3-1 are incorrect because the affect of cutting the notch has not been quantified.

Two modified residual stress fields were used to evaluate the effect that the initial notch
might have on calculated stress intensity factors. The modified residual stress fields were based on
the residual stress field obtained from a NASCRAC™ plane strain analysis of the input given in
Table 4.12.2-2 representing the geometry shown in Figure 4.12.2-1. This residual stress field was
chosen for investigation because crack growth predicted by the NASCRAC™ plane strain analysis
matched the experimental observations better than crack growth predicted by the NASCRAC™
plane stress analysis.

The modified residual stress fields were input to NASCRAC™ using a table of X
coordinates and corresponding stresses. In the first modified field, the stresses at two entries in
the table, X = 0.000 inches and X = 0.010 inches, were set to zero. These entries corresponded to
the region where the initial notch was cut. All the remaining entries in the table (X = 0.015 inches)
matched the NASCRACT™ plane strain analysis residual stress field. In the second modified
stress field, the stresses at X = 0.000 inches and X = 0.010 inches were “relieved” as in the first
modified field. However, the relieved load was uniformly redistributed over the next two entries
in the table, X = 0.015 and X = 0.020 inches. The remaining entries (X 2 0.040 inches) matched
the stress field from the NASCRAC™ plane strain analysis. The residual stresses that were
released when the notch was cut had to be re-distributed in some manner to maintain equilibrium.
Therefore, the second modified stress field more closely simulated the residual stress field that
occurred in test I-3-a. The manner in which the relieved stresses were redistributed for this
analysis was not unique. This modified stress field was chosen arbitrarily for the sake of
comparison. The plane strain analysis residual stress field, and the two modified residual stress
fields are shown in Figure 4.12.2.3-3.

The residual stress fields discussed above would retard fatigue crack growth by reducing
the stress intensity factors encountered during fatigue loading. The stress intensity factors caused
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by the residual stress fields, Kres.pl.siress and Kres.plsirain, and the stress intensity factors caused by
the maximum fatigue load, Kya, are shown in Figure 4.12.2.3-3 as functions of crack length a.

Stress intensity factors from the plane strain analysis, Kes.plsirain and from the two
modified residual stress fields, Kres.pl.strain-mod 1 @nd Kres pl.sirain-mod 2, are shown in Figure
4.12.2.3-4. These values are shown as a percent of the stress intensity factors due to the
maximum fatigue load, Kgg, in Figure 4.12.2.3-5. The kinking of the stress intensity factor plots
is probably due to the discretization of the load tables. The modified residual stress fields have
extreme stress gradients near the notch tip, making the analyses susceptible to discretization errors.
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All the residual
stress fields analyzed had
both regions of tension
and regions of
compression. The
predicted stress intensity
fields became less negative
when the crack tip reached
the region of tensile
residual stresses. The first
modified residual stress
field had less compressive
load than both the second
modified field or the plane
strain analysis residual
stress field. Therefore, the
stress intensity factors
calculated with the first
modified stress field
remain less negative than
the stress intensity factors
calculated with the other
two residual stress fields.
The stress intensity factors
for cracks close to the
initial notch size calculated
for the second modified
residual stress field were
less negative than the
stress intensity factors

calculated for the original plane strain analysis stress field. As the crack grews beyond the region
of the initial notch, the two sets of stress intensity factor calculations converged.
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An analysis of the second modified residual stress field predicted that the redistribution of
the residual stresses when the notch was cut affected crack growth rate in the first 0.01 inches of
true fatigue crack propagation. This number is dependent on the way in which the residual stresses
were actually redistributed. The effect of the notch might be significant for crack lengths greater
than that predicted using the second modified-residual stress field. All of the residual stress fields
analyzed small cracks more than large cracks.

4.12.3 CONCLUSIONS

The following conclusions may be drawn regarding the NASCRAC™ crack propagation
through a residual stress field and elastic plastic stress redistribution algorithms:

» NASCRAC™-predicted fatigue life is sensitive to the input parameters used. It was
observed that a 10% change in the yield stress could double the NASCRAC™-predicted
life.

« NASCRAC™-predicted fatigue crack growth retardation for this test series is most
significant for small cracks. This is contrary to the experimental results, where no
retardation was observed.

« In this test series, the most significant factors affecting the crack growth rates for small
cracks were crack initiation and/or the “small crack effect.”

Cutting an initial notch prior to the overloads might allow cracks to initiate and to propagate
through a residual stress field but have a smaller portion of the fatigue life spent in the small crack
region. However, the residual stress field would still have the most significant effect on crack
growth rates when the crack was small, and there still would be problems predicting crack growth
for small cracks. Furthermore, there are limits to how much of the ligament may yield and still
have the elastic-plastic stress redistribution algorithm be applicable. The test specimens in this test
were chosen to represent reasonable structural members, but larger test specimens would allow for
a larger region of residual stresses, and possibly more noticeable crack growth retardation.

4.12.4 REFERENCES FOR SECTION 4.12

1. Newman, J.C. Jr., Swain, M. H., “An Assesment of the Small-Crack Effect for 2024-T3
Aluminum Alloy”, Small Fatigue Cracks, Ritchie, R.O., and Lankford, J., ed.

2. Newman, J.C. Jr., Swain, M.H,, Phillips, E.P. “An Assessment of the Small-Crack Effect
for 2024-T3 Aluminum Alloy”, Small Fatigue Cracks. Proceedings of the Second
Engineering Foundation International Conference/Workshop, Santa Barbara, CA. Jan 5-
10, 1986 Ritchie, R.O., Lankford, J., ed.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

Evaluation of NASCRAC™ version 2.0 for verification and validity has been completed.
Several limitations and minor errors were detected and documented in Section 4.0 of this report.
Additionally, a few major flaws were observed and are reiterated and discussed in this section.
These major flaws are generally due to application of a specific method or theory, not due to
programming logic.

The K vs a,J vs a and crack opening area capabilities in NASCRAC™ were generally
found to be valid. Variable thickness K vs @ solutions were in good agreement with the references
when consistent input quantities were included. The J vs a and crack opening area capabilities in
NASCRAC™ were very limited in scope; only eight J vs a configurations and five crack opening
area configurations were available. NASCRAC should not be promoted for these capabilities
because of this limited scope.

The K solution for configuration 404, edge crack in a solid circular bar, should be
reformulated in future releases of NASCRAC™. The current solution assumes a geometry that is
easily described with two variables. This geometry is reasonable for static K vs a analyses where
a is less than the radius of the cylinder; however, during fatigue crack growth, this model would
grow the crack in a non-conservative manner.

The use of RMS averaging to calculate K values for three dimensional surface cracks such as
configurations 601, 602, 702 and 704 is suspect when high stress gradients are present.
NASA/MSEC should develop a consensus on this approach to calculating K's before employing
NASCRAC™ computed K's for these configurations when bending or significant stress
concentration is present.

The results for configurations 601 and 602 suggest the development of improved solutions
which more accurately model these configurations. A parametric finite element analysis is the
most viable approach to develop these improved solutions. The analysis should include hole
diameter, plate width, plate thickness, and pin load distribution as parameters.

Weight functions for 702, 704, and 705 were derived from the 703 weight function and
adjusted for geometry. Application of this function to the 702 and 704 geometry is questionable
due to curvature effects, especially at crack tip ap, which is curved in the case of 703 and 705 but
straight in the case of 702 and 704. To increase confidence, NASA should develop independent
weight function solutions for 702 and 704 for incorporation into NASCRAC™. It may be
possible to derive such independent solutions from the work of Newman and Raju.

The fatigue crack growth capability in NASCRAC™ is valid for the Paris equation in
situations where the Paris equation is applicable and material parameters are valid. The Walker
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and Collipriest equations in NASCRAC™ were verified but not validated because only a limited
number of references were found and because these equations are not commonly used. The
modified Forman and Hopkins-Rau equations in NASCRAC were found to be invalid due to
coding errors. The coded algorithms for both equations diverged from the source algorithms. The
differences were not simple typographical errors. In some instances (e.g., R = 0.0), the error in the
modified Forman equation did not significantly effect predicted crack growth rates.

An attempt was made to validate the NASCRAC™ proof test logic with comparisons of
predictions to experimental observations for three dimensional configurations. Observed failure
loads were much higher than predicted by NASCRAC™ for the plane strain fracture toughness
given in the NASCRAC™ material properties library. This discrepancy resulted in NASCRAC™
underpredicting the largest crack that could survive a given proofload. In the remaining fatigue life
calculation, NASCRAC™ neglects retardation following the proofload, which was a significant
factor in the test results. Due to these two discrepancies, the guaranteed life predicted by
NASCRAC™ did not correlate with test results.

The tearing instability capability in NASCRAC™ was evaluated versus results from
closed form and graphical solutions. Although the results were in good agreement, the algorithm
implemented in NASCRAC™ did not agree with the algorithm described in the NASCRAC™
Theory Manual. In addition, the three-dimensional capability has little applicability to physical
problems because criteria for stable tearing cannot be achieved in the available NASCRAC three-
dimensional configurations.

The C* creep crack growth algorithm implemented in NASCRAC™ is only applicable to
a limited number of materials. In particular, the C* model is not valid for predicting creep crack
growth rates in aluminum and is not a recommended model in designing aluminum structural
members. C* is applicable to type 304 stainless steel; however, the range of crack growth rates
reported in the literature is broad. The experimentally-observed and NASCRAC™.-predicted creep
crack growth rates for 304 stainless steel fell within this reported range; however, because this
range was broad, the evaluation of NASCRAC™ creep crack growth validity was inconclusive.

The crack transitioning capability in NASCRAC™ predicted conservative results due to
the simplistic algorithm implemented. The NASCRAC™ algorithm employs a transition factor fi
to describe the transition from one configuration (e.g., a surface crack) to another configuration
(e.g., a corner crack). This implementation missed the cycles required to effect this transition in
laboratory tests. In the tests, transition from a surface crack to a corner crack occurred over a finite
number of cycles, not a single cycle with a correction factor for area.

Results from the Wheeler and Willenborg retardation models in NASCRAC™ were
compared to offline algorithms and experimental observations. These comparisons verified of
implementation of these models. In general, the NASCRAC™ models predicted the trends of
crack growth retardation. However, these models are very simplistic and do a poor job of
capturing the physics of crack retardation. In a number of instances, the predicted crack growth
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rates were non-conservative compared to tests; therefore, the models can only be considered
marginally valid

The NASCRAC™ elastic-plastic stress redistribution results were very sensitive to
material properties and constraint conditions. This sensitivity renders this capability impractical for
engineering calculations since small perturbations in inputs result in large variations in predicted
crack growth rates.

In conclusion, several minor errors and a few major flaws were observed during in
NASCRAC™ version 2.0. These flaws result in the following general conclusion: NASCRAC™
is an acceptable fracture tool for K solutions of simplified geometries, an acceptable but limited
tool for J solutions and crack opening areas, and an acceptable tool for fatigue crack propagation
with the Paris equation and constant amplitude loads when the Paris equation is applicable.
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APPENDIX A
Recommended Limits on K, J, and Crack Opening Area Solutions

This appendix provides the recommended limits on the input variables for the NASCRACK, J,
and crack opening area solutions. The limits were derived from the NASCRAC documentation,
the literature, and analytical results.

K SOLUTIONS

Configuration 101
e 2<W/B <4 where W = plate width and B = plate thickness.
« 02<a/W<1.0

Configuration 102
¢« 2<W/B <4 where W = disk width and B = disk thickness.
e 02<a/W<1.0

Configuration 103
e 2<W/B <4 where W = arc width and B = arc thickness.
e 035a/W<1.0

ration 104
» 2<W/B <4 where W = beam depth and B = beam thickness.
» L =2W where 2L = span length.

Configuration 201

 Variable thickness option requires load/unit width inputs.

nfi ion 202
 Variable thickness option requires load/unit width inputs.
» Loads assumed to be symmetric about panel centerline.

Configuration 203

» Variable thickness option requires stress inputs.

Configuration 204
 Variable thickness option requires load/unit width inputs.
» Loads assumed to be symmetric about plate centerline.



Configuration 205
« a/W <099

 Variable thickness option requires stress inputs. Option has littlepractical use.

» /W <20 for uniform tension solution.

« Weight function coded only for r/W =1, 5, 10 where r = inner cylinder radius
and W = cylinder wall thickness. NASCRAC™ will accept other ratios but always
reverts to a coded ratio.

Configuration 206

 Variable thickness option requires stress inputs.

Configuration 207
 Variable thickness option requires stress inputs. Option has little practical use.
» 1/W =1 where r = inner cylinder radius and W = cylinder wall thickness.

NASCRAC™ will accept other ratios but always reverts to the coded ratio.

Configuration 208
« H/W 2 2. Marginally acceptable for 1 < H/W <2 where H is plate height and W = plate

width.

nfi ion 2
+ None known.

Configuration 301
« Thin shell theory, i.e., R/t = 10 where R = sphere radius and t = wall thickness.
« %<3 where A =aNR

iguration 302
« Thin shell theory, i.e., R/t 2 10 where R = cylinder radius and t = wall thickness.
« 0<A<10 where A = a~tR

iguration
« Thin shell theory, i.e., R/t 2 10 where R = cylinder radius and t = wall thickness.

nfiguration 401
e 0.1 <1/(r+t) € 0.9 where r = inner cylinder radius and t = wall thickness.
e (.11 €1/t £ 20 for uniform tension solution.
« Weight function coded for r/t =5, 10. Forr/t <7.5 NASCRAC™ reverts to r/t =5 and
for r/t > 7.5 NASCRAC™ reverts tor/t = 10.

nfi ion 402
* None known.
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nfi ion 4
* 0.1 <1/(r+t) £ 0.9 where r = inner cylinder radius and t = wall thickness.

Configuration 404
- a/R<0.5

nfi ion 502
« None known.

ration 601
* Solution is non-conservative due to RMS averaging. Users should understand the
consequences of RMS averaging.

iguration
+ Solution is non-conservative due to RMS averaging. Users should understand the
consequences of RMS averaging.

Configuration 605

« None known.

nfiguration 702
e 1< (ay+a3z)2a; £20
« Solution is non-conservative for high stress gradients (e.g., bending loads) due to RMS
averaging. Users should understand the consequences of RMS averaging.

Configuration 703

e 1< (ay+a3)2a; £20

Configuration 704

o 1< (ap+a3)2a; £20
* Solution is non-conservative for high stress gradients (e.g., bending loads) due to RMS
averaging. Users should understand the consequences of RMS averaging.

nfiguration 70
o 1< (ap+a3)2a; £20



J SOLUTIONS

Configuration 101
e 0.25<a/W<1.0
e 1<n<20

Configuration 104
+ 0.125 <a/W <0.875

e+ 1<€n<20

nfiguration 202
e 0.0<a/W<0.875
e 1<n<20

Configuration 203
e 0.0<a/W<£0.875

+ 1<n<20
« Avoid plane strain analyses for elastic-plastic and plastic conditions.

Configuration 204
e 0.125 <a/W <0.875 for plane stress.
e 0.125 <a/W <£0.75 for plane strain.
«+ 1<n<20

Configuration 205
e 0.125<a/W<0.75

e 1<n<10

nfiguration
« Invalid due to two coding errors. If coding errors are corrected, solution limits become
0.25<a/W<10and1<n<20

nfiguration 401
e 0.25<a/W<1.0
e 1<€n<20



CRACK OPENING AREA SOLUTIONS

Configuration 201

 Valid for plane strain.
» Underestimates plane stress COA by (1-v2) where v is Poisson's ratio.

Configuration 202
« Valid for plane strain.

 Underestimates plane stress COA by (1-v2) where v is Poisson's ratio.

Configuration 301
e 0<A<3 where A =aNR

Configuration 302
e 0<A<5 where A = a/NiR

Configuration 303
« 0<A<1 where=aNIR
» Coding error invalidates solution for 1 <A <5
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